Prioritizing Image-Related Tokens Enhances Vision-Language Pre-Training
- URL: http://arxiv.org/abs/2505.08971v1
- Date: Tue, 13 May 2025 21:27:52 GMT
- Title: Prioritizing Image-Related Tokens Enhances Vision-Language Pre-Training
- Authors: Yangyi Chen, Hao Peng, Tong Zhang, Heng Ji,
- Abstract summary: PRIOR is a vision-language pre-training approach that prioritizes image-related tokens through differential weighting in the NTP loss.<n>We observe 19% and 8% average relative improvement, respectively, on several vision-language benchmarks compared to NTP.
- Score: 78.60953331455565
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In standard large vision-language models (LVLMs) pre-training, the model typically maximizes the joint probability of the caption conditioned on the image via next-token prediction (NTP); however, since only a small subset of caption tokens directly relates to the visual content, this naive NTP unintentionally fits the model to noise and increases the risk of hallucination. We present PRIOR, a simple vision-language pre-training approach that addresses this issue by prioritizing image-related tokens through differential weighting in the NTP loss, drawing from the importance sampling framework. PRIOR introduces a reference model-a text-only large language model (LLM) trained on the captions without image inputs, to weight each token based on its probability for LVLMs training. Intuitively, tokens that are directly related to the visual inputs are harder to predict without the image and thus receive lower probabilities from the text-only reference LLM. During training, we implement a token-specific re-weighting term based on the importance scores to adjust each token's loss. We implement PRIOR in two distinct settings: LVLMs with visual encoders and LVLMs without visual encoders. We observe 19% and 8% average relative improvement, respectively, on several vision-language benchmarks compared to NTP. In addition, PRIOR exhibits superior scaling properties, as demonstrated by significantly higher scaling coefficients, indicating greater potential for performance gains compared to NTP given increasing compute and data.
Related papers
- Rethinking Visual Token Reduction in LVLMs under Cross-modal Misalignment [38.04426918886084]
Vision-Language Models (LVLMs) encode visual inputs as dense sequences of patch-level tokens to capture fine-grained semantics.<n>Previous efforts have explored visual token reduction either prior to or within the large language models (LLMs)<n>We introduce VisionDrop, a training-free, visual-only pruning framework that selects informative visual tokens based on intra-modal (visual-to-visual) attention.
arXiv Detail & Related papers (2025-06-27T14:55:40Z) - Revisit What You See: Disclose Language Prior in Vision Tokens for Efficient Guided Decoding of LVLMs [8.97780713904412]
This paper introduces ReVisiT, a simple yet effective decoding method that references vision tokens to guide the text generation process in Large Vision-Language Models (LVLMs)<n>Our approach leverages the semantic information embedded within vision tokens by projecting them into the text token distribution space, and dynamically selecting the most relevant vision token at each decoding step through constrained divergence minimization. Experiments on three LVLM benchmarks with two recent LVLMs demonstrate that ReVisiT consistently enhances visual grounding with minimal computational overhead.
arXiv Detail & Related papers (2025-06-11T08:46:55Z) - Efficient Multi-modal Large Language Models via Visual Token Grouping [55.482198808206284]
High-resolution images and videos pose a barrier to their broader adoption.<n> compressing vision tokens in MLLMs has emerged as a promising approach to reduce inference costs.<n>We introduce VisToG, a novel grouping mechanism that leverages the capabilities of pre-trained vision encoders to group similar image segments.
arXiv Detail & Related papers (2024-11-26T09:36:02Z) - FoPru: Focal Pruning for Efficient Large Vision-Language Models [11.36025001578531]
We propose Focal Pruning (FoPru), a training-free method that prunes visual tokens based on the attention-based token significance derived from the vision encoder.
Our method can prune a large number of redundant tokens while maintaining high accuracy, leading to significant improvements in inference efficiency.
arXiv Detail & Related papers (2024-11-21T14:22:38Z) - Inference Optimal VLMs Need Fewer Visual Tokens and More Parameters [54.01228554126122]
Vision Language Models (VLMs) have demonstrated strong capabilities across various visual understanding and reasoning tasks.<n>To reduce inference costs, one can either downsize the Large Language Models (LLMs) or reduce the number of input tokens needed to represent the image.<n>We take the first steps toward designing token compression algorithms tailored for high-compression settings.
arXiv Detail & Related papers (2024-11-05T18:54:21Z) - Weakly Supervised Vision-and-Language Pre-training with Relative
Representations [76.63610760577214]
Weakly supervised vision-and-language pre-training has been shown to effectively reduce the data cost of pre-training.
Current methods use only local descriptions of images, i.e., object tags, as cross-modal anchors to construct weakly-aligned image-text pairs for pre-training.
arXiv Detail & Related papers (2023-05-24T18:10:24Z) - Leveraging per Image-Token Consistency for Vision-Language Pre-training [52.825150269820696]
Cross-modal masked language modeling (CMLM) is insufficient for vision-language pre-training.
We propose EPIC (lEveraging Per Image-Token Consistency for vision-language pre-training)
The proposed EPIC method is easily combined with pre-training methods.
arXiv Detail & Related papers (2022-11-20T12:10:53Z) - Prompt-based Learning for Unpaired Image Captioning [86.44188293709307]
Unpaired Image Captioning (UIC) has been developed to learn image descriptions from unaligned vision-language sample pairs.
Recent successes of Vision-Language Pre-Trained Models (VL-PTMs) have triggered the development of prompt-based learning.
We present in this paper a novel scheme based on prompt to train the UIC model, making best use of the powerful generalization ability.
arXiv Detail & Related papers (2022-05-26T03:13:43Z) - Single-Stream Multi-Level Alignment for Vision-Language Pretraining [103.09776737512078]
We propose a single stream model that aligns the modalities at multiple levels.
We achieve this using two novel tasks: symmetric cross-modality reconstruction and a pseudo-labeled key word prediction.
We demonstrate top performance on a set of Vision-Language downstream tasks such as zero-shot/fine-tuned image/text retrieval, referring expression, and VQA.
arXiv Detail & Related papers (2022-03-27T21:16:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.