Revisit What You See: Disclose Language Prior in Vision Tokens for Efficient Guided Decoding of LVLMs
- URL: http://arxiv.org/abs/2506.09522v1
- Date: Wed, 11 Jun 2025 08:46:55 GMT
- Title: Revisit What You See: Disclose Language Prior in Vision Tokens for Efficient Guided Decoding of LVLMs
- Authors: Beomsik Cho, Jaehyung Kim,
- Abstract summary: This paper introduces ReVisiT, a simple yet effective decoding method that references vision tokens to guide the text generation process in Large Vision-Language Models (LVLMs)<n>Our approach leverages the semantic information embedded within vision tokens by projecting them into the text token distribution space, and dynamically selecting the most relevant vision token at each decoding step through constrained divergence minimization. Experiments on three LVLM benchmarks with two recent LVLMs demonstrate that ReVisiT consistently enhances visual grounding with minimal computational overhead.
- Score: 8.97780713904412
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Vision-Language Models (LVLMs) have demonstrated remarkable performance across various multimodal tasks by integrating visual perception with language understanding. However, conventional decoding strategies of LVLMs often fail to successfully utilize visual information, leading to visually ungrounded responses. While various approaches have been proposed to address this limitation, they typically require additional training, multi-step inference procedures, or external model dependencies. This paper introduces ReVisiT, a simple yet effective decoding method that references vision tokens to guide the text generation process in LVLMs. Our approach leverages the semantic information embedded within vision tokens by projecting them into the text token distribution space, and dynamically selecting the most relevant vision token at each decoding step through constrained divergence minimization. This selected vision token is then used to refine the output distribution to better incorporate visual semantics. Experiments on three LVLM hallucination benchmarks with two recent LVLMs demonstrate that ReVisiT consistently enhances visual grounding with minimal computational overhead. Moreover, our method achieves competitive or superior results relative to state-of-the-art baselines while reducing computational costs for up to $2\times$.
Related papers
- ONLY: One-Layer Intervention Sufficiently Mitigates Hallucinations in Large Vision-Language Models [67.75439511654078]
Large Vision-Language Models (LVLMs) have introduced a new paradigm for understanding and reasoning about image input through textual responses.<n>They face the persistent challenge of hallucination, which introduces practical weaknesses and raises concerns about their reliable deployment in real-world applications.<n>We propose ONLY, a training-free decoding approach that requires only a single query and a one-layer intervention during decoding, enabling efficient real-time deployment.
arXiv Detail & Related papers (2025-07-01T16:01:08Z) - Rethinking Visual Token Reduction in LVLMs under Cross-modal Misalignment [38.04426918886084]
Vision-Language Models (LVLMs) encode visual inputs as dense sequences of patch-level tokens to capture fine-grained semantics.<n>Previous efforts have explored visual token reduction either prior to or within the large language models (LLMs)<n>We introduce VisionDrop, a training-free, visual-only pruning framework that selects informative visual tokens based on intra-modal (visual-to-visual) attention.
arXiv Detail & Related papers (2025-06-27T14:55:40Z) - Lifting the Veil on Visual Information Flow in MLLMs: Unlocking Pathways to Faster Inference [28.24397677839652]
Multimodal large language models (MLLMs) improve performance on vision-language tasks by integrating visual features from pre-trained vision encoders into large language models.<n>How MLLMs process and utilize visual information remains unclear.<n>We propose Hierarchical Modality-Aware Pruning (HiMAP), a plug-and-play inference acceleration method that dynamically prunes image tokens at specific layers, reducing computational costs by approximately 65% without sacrificing performance.
arXiv Detail & Related papers (2025-03-17T12:31:23Z) - Looking Beyond Text: Reducing Language bias in Large Vision-Language Models via Multimodal Dual-Attention and Soft-Image Guidance [67.26434607115392]
Large vision-language models (LVLMs) have achieved impressive results in various vision-language tasks.
LVLMs suffer from hallucinations caused by language bias, leading to diminished focus on images and ineffective visual comprehension.
We propose LACING to address the language bias of LVLMs with muLtimodal duAl-attention meChanIsm (MDA) aNd soft-image Guidance (IFG)
arXiv Detail & Related papers (2024-11-21T16:33:30Z) - FoPru: Focal Pruning for Efficient Large Vision-Language Models [11.36025001578531]
We propose Focal Pruning (FoPru), a training-free method that prunes visual tokens based on the attention-based token significance derived from the vision encoder.
Our method can prune a large number of redundant tokens while maintaining high accuracy, leading to significant improvements in inference efficiency.
arXiv Detail & Related papers (2024-11-21T14:22:38Z) - VideoLLM-MoD: Efficient Video-Language Streaming with Mixture-of-Depths Vision Computation [66.00245701441547]
We introduce a novel approach to reduce vision compute by leveraging redundant vision tokens "skipping layers" rather than decreasing the number of vision tokens.
Our method, VideoLLM-MoD, is inspired by mixture-of-depths LLMs and addresses the challenge of numerous vision tokens in long-term or streaming video.
arXiv Detail & Related papers (2024-08-29T17:21:58Z) - Towards Semantic Equivalence of Tokenization in Multimodal LLM [149.11720372278273]
Vision tokenization is essential for semantic alignment between vision and language.<n>This paper proposes a novel dynamic Semantic-Equivalent Vision Tokenizer (SeTok)<n>SeTok groups visual features into semantic units via a dynamic clustering algorithm.<n>The resulting vision tokens effectively preserve semantic integrity and capture both low-frequency and high-frequency visual features.
arXiv Detail & Related papers (2024-06-07T17:55:43Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
Chain-of-Spot (CoS) method is a novel approach that enhances feature extraction by focusing on key regions of interest.
This technique allows LVLMs to access more detailed visual information without altering the original image resolution.
Our empirical findings demonstrate a significant improvement in LVLMs' ability to understand and reason about visual content.
arXiv Detail & Related papers (2024-03-19T17:59:52Z) - Enhancing Visual Document Understanding with Contrastive Learning in
Large Visual-Language Models [56.76307866160105]
We propose a contrastive learning framework, termed Document Object COntrastive learning (DoCo)
DoCo leverages an auxiliary multimodal encoder to obtain the features of document objects and align them to the visual features generated by the vision encoder of Large Visual-Language Models (LVLMs)
We demonstrate that the proposed DoCo serves as a plug-and-play pre-training method, which can be employed in the pre-training of various LVLMs without inducing any increase in computational complexity during the inference process.
arXiv Detail & Related papers (2024-02-29T10:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.