Modeling Interdependent Cybersecurity Threats Using Bayesian Networks: A Case Study on In-Vehicle Infotainment Systems
- URL: http://arxiv.org/abs/2505.09048v1
- Date: Wed, 14 May 2025 01:04:45 GMT
- Title: Modeling Interdependent Cybersecurity Threats Using Bayesian Networks: A Case Study on In-Vehicle Infotainment Systems
- Authors: Sangita Sridar,
- Abstract summary: This paper reviews the application of Bayesian Networks (BNs) in cybersecurity risk modeling.<n>A case study is presented in which a STRIDE-based attack tree for an automotive In-Vehicle Infotainment (IVI) system is transformed into a BN.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cybersecurity threats are increasingly marked by interdependence, uncertainty, and evolving complexity challenges that traditional assessment methods such as CVSS, STRIDE, and attack trees fail to adequately capture. This paper reviews the application of Bayesian Networks (BNs) in cybersecurity risk modeling, highlighting their capacity to represent probabilistic dependencies, integrate diverse threat indicators, and support reasoning under uncertainty. A structured case study is presented in which a STRIDE-based attack tree for an automotive In-Vehicle Infotainment (IVI) system is transformed into a Bayesian Network. Logical relationships are encoded using Conditional Probability Tables (CPTs), and threat likelihoods are derived from normalized DREAD scores. The model enables not only probabilistic inference of system compromise likelihood but also supports causal analysis using do-calculus and local sensitivity analysis to identify high-impact vulnerabilities. These analyses provide insight into the most influential nodes within the threat propagation chain, informing targeted mitigation strategies. While demonstrating the potential of BNs for dynamic and context-aware risk assessment, the study also outlines limitations related to scalability, reliance on expert input, static structure assumptions, and limited temporal modeling. The paper concludes by advocating for future enhancements through Dynamic Bayesian Networks, structure learning, and adaptive inference to better support real-time cybersecurity decision-making in complex environments.
Related papers
- Exploiting Edge Features for Transferable Adversarial Attacks in Distributed Machine Learning [54.26807397329468]
This work explores a previously overlooked vulnerability in distributed deep learning systems.<n>An adversary who intercepts the intermediate features transmitted between them can still pose a serious threat.<n>We propose an exploitation strategy specifically designed for distributed settings.
arXiv Detail & Related papers (2025-07-09T20:09:00Z) - A Survey on Autonomy-Induced Security Risks in Large Model-Based Agents [45.53643260046778]
Recent advances in large language models (LLMs) have catalyzed the rise of autonomous AI agents.<n>These large-model agents mark a paradigm shift from static inference systems to interactive, memory-augmented entities.
arXiv Detail & Related papers (2025-06-30T13:34:34Z) - Expert-in-the-Loop Systems with Cross-Domain and In-Domain Few-Shot Learning for Software Vulnerability Detection [38.083049237330826]
This study explores the use of Large Language Models (LLMs) in software vulnerability assessment by simulating the identification of Python code with known Common Weaknessions (CWEs)<n>Our results indicate that while zero-shot prompting performs poorly, few-shot prompting significantly enhances classification performance.<n> challenges such as model reliability, interpretability, and adversarial robustness remain critical areas for future research.
arXiv Detail & Related papers (2025-06-11T18:43:51Z) - Benchmarking the Spatial Robustness of DNNs via Natural and Adversarial Localized Corruptions [49.546479320670464]
This paper introduces specialized metrics for benchmarking the spatial robustness of segmentation models.<n>We propose region-aware multi-attack adversarial analysis, a method that enables a deeper understanding of model robustness.<n>The results reveal that models respond to these two types of threats differently.
arXiv Detail & Related papers (2025-04-02T11:37:39Z) - Exploring Answer Set Programming for Provenance Graph-Based Cyber Threat Detection: A Novel Approach [4.302577059401172]
Provenance graphs are useful tools for representing system-level activities in cybersecurity.<n>This paper presents a novel approach using ASP to model and analyze provenance graphs.
arXiv Detail & Related papers (2025-01-24T14:57:27Z) - CTINexus: Automatic Cyber Threat Intelligence Knowledge Graph Construction Using Large Language Models [49.657358248788945]
Textual descriptions in cyber threat intelligence (CTI) reports are rich sources of knowledge about cyber threats.<n>Current CTI knowledge extraction methods lack flexibility and generalizability.<n>We propose CTINexus, a novel framework for data-efficient CTI knowledge extraction and high-quality cybersecurity knowledge graph (CSKG) construction.
arXiv Detail & Related papers (2024-10-28T14:18:32Z) - Towards the generation of hierarchical attack models from cybersecurity vulnerabilities using language models [3.7548609506798494]
This paper investigates the use of a pre-trained language model and siamese network to discern sibling relationships between text-based cybersecurity vulnerability data.
arXiv Detail & Related papers (2024-10-07T13:05:33Z) - Cyber Knowledge Completion Using Large Language Models [1.4883782513177093]
Integrating the Internet of Things (IoT) into Cyber-Physical Systems (CPSs) has expanded their cyber-attack surface.
Assessing the risks of CPSs is increasingly difficult due to incomplete and outdated cybersecurity knowledge.
Recent advancements in Large Language Models (LLMs) present a unique opportunity to enhance cyber-attack knowledge completion.
arXiv Detail & Related papers (2024-09-24T15:20:39Z) - Threat-Informed Cyber Resilience Index: A Probabilistic Quantitative Approach to Measure Defence Effectiveness Against Cyber Attacks [0.36832029288386137]
This paper introduces the Cyber Resilience Index (CRI), a threat-informed probabilistic approach to quantifying an organisation's defence effectiveness against cyber-attacks (campaigns)
Building upon the Threat-Intelligence Based Security Assessment (TIBSA) methodology, we present a mathematical model that translates complex threat intelligence into an actionable, unified metric similar to a stock market index, that executives can understand and interact with while teams can act upon.
arXiv Detail & Related papers (2024-06-27T17:51:48Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
We present a comprehensive analysis of the characterization of adversarial inputs, through the lens of formal verification.
We introduce a novel metric, the Adversarial Rate, to classify models based on their susceptibility to such perturbations.
Our analysis empirically demonstrates how adversarial inputs can affect the safety of a given DRL system with respect to such perturbations.
arXiv Detail & Related papers (2024-02-07T21:58:40Z) - It Is Time To Steer: A Scalable Framework for Analysis-driven Attack Graph Generation [50.06412862964449]
Attack Graph (AG) represents the best-suited solution to support cyber risk assessment for multi-step attacks on computer networks.
Current solutions propose to address the generation problem from the algorithmic perspective and postulate the analysis only after the generation is complete.
This paper rethinks the classic AG analysis through a novel workflow in which the analyst can query the system anytime.
arXiv Detail & Related papers (2023-12-27T10:44:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.