Air-Ground Collaboration for Language-Specified Missions in Unknown Environments
- URL: http://arxiv.org/abs/2505.09108v1
- Date: Wed, 14 May 2025 03:33:46 GMT
- Title: Air-Ground Collaboration for Language-Specified Missions in Unknown Environments
- Authors: Fernando Cladera, Zachary Ravichandran, Jason Hughes, Varun Murali, Carlos Nieto-Granda, M. Ani Hsieh, George J. Pappas, Camillo J. Taylor, Vijay Kumar,
- Abstract summary: We present a first-of-its-kind system where an unmanned aerial vehicle (UAV) and an unmanned ground vehicle (UGV) are able to collaboratively accomplish missions specified in natural language.<n>We leverage a Large Language Model (LLM)-enabled planner to reason over semantic-metric maps that are built online and opportunistically shared between an aerial and a ground robot.
- Score: 62.56917065429864
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: As autonomous robotic systems become increasingly mature, users will want to specify missions at the level of intent rather than in low-level detail. Language is an expressive and intuitive medium for such mission specification. However, realizing language-guided robotic teams requires overcoming significant technical hurdles. Interpreting and realizing language-specified missions requires advanced semantic reasoning. Successful heterogeneous robots must effectively coordinate actions and share information across varying viewpoints. Additionally, communication between robots is typically intermittent, necessitating robust strategies that leverage communication opportunities to maintain coordination and achieve mission objectives. In this work, we present a first-of-its-kind system where an unmanned aerial vehicle (UAV) and an unmanned ground vehicle (UGV) are able to collaboratively accomplish missions specified in natural language while reacting to changes in specification on the fly. We leverage a Large Language Model (LLM)-enabled planner to reason over semantic-metric maps that are built online and opportunistically shared between an aerial and a ground robot. We consider task-driven navigation in urban and rural areas. Our system must infer mission-relevant semantics and actively acquire information via semantic mapping. In both ground and air-ground teaming experiments, we demonstrate our system on seven different natural-language specifications at up to kilometer-scale navigation.
Related papers
- Deploying Foundation Model-Enabled Air and Ground Robots in the Field: Challenges and Opportunities [65.98704516122228]
The integration of foundation models (FMs) into robotics has enabled robots to understand natural language and reason about the semantics in their environments.<n>This paper addresses the deployment of FM-enabled robots in the field, where missions often require a robot to operate in large-scale and unstructured environments.<n>We present the first demonstration of large-scale LLM-enabled robot planning in unstructured environments with several kilometers of missions.
arXiv Detail & Related papers (2025-05-14T15:28:43Z) - SPINE: Online Semantic Planning for Missions with Incomplete Natural Language Specifications in Unstructured Environments [27.485636944766718]
Large Language Models (LLMs) have demonstrated powerful contextual reasoning abilities over a range of robotic tasks.<n>SPINE is an online planner for missions with incomplete mission specifications provided in natural language.<n>We evaluate SPINE in simulation and real-world settings with missions that require multiple steps of semantic reasoning and exploration.
arXiv Detail & Related papers (2024-10-03T22:41:47Z) - Navigation with Large Language Models: Semantic Guesswork as a Heuristic
for Planning [73.0990339667978]
Navigation in unfamiliar environments presents a major challenge for robots.
We use language models to bias exploration of novel real-world environments.
We evaluate LFG in challenging real-world environments and simulated benchmarks.
arXiv Detail & Related papers (2023-10-16T06:21:06Z) - LM-Nav: Robotic Navigation with Large Pre-Trained Models of Language,
Vision, and Action [76.71101507291473]
We present a system, LM-Nav, for robotic navigation that enjoys the benefits of training on unannotated large datasets of trajectories.
We show that such a system can be constructed entirely out of pre-trained models for navigation (ViNG), image-language association (CLIP), and language modeling (GPT-3), without requiring any fine-tuning or language-annotated robot data.
arXiv Detail & Related papers (2022-07-10T10:41:50Z) - Do As I Can, Not As I Say: Grounding Language in Robotic Affordances [119.29555551279155]
Large language models can encode a wealth of semantic knowledge about the world.
Such knowledge could be extremely useful to robots aiming to act upon high-level, temporally extended instructions expressed in natural language.
We show how low-level skills can be combined with large language models so that the language model provides high-level knowledge about the procedures for performing complex and temporally-extended instructions.
arXiv Detail & Related papers (2022-04-04T17:57:11Z) - Learning Language-Conditioned Robot Behavior from Offline Data and
Crowd-Sourced Annotation [80.29069988090912]
We study the problem of learning a range of vision-based manipulation tasks from a large offline dataset of robot interaction.
We propose to leverage offline robot datasets with crowd-sourced natural language labels.
We find that our approach outperforms both goal-image specifications and language conditioned imitation techniques by more than 25%.
arXiv Detail & Related papers (2021-09-02T17:42:13Z) - Language Understanding for Field and Service Robots in a Priori Unknown
Environments [29.16936249846063]
This paper provides a novel learning framework that allows field and service robots to interpret and execute natural language instructions.
We use language as a "sensor" -- inferring spatial, topological, and semantic information implicit in natural language utterances.
We incorporate this distribution in a probabilistic language grounding model and infer a distribution over a symbolic representation of the robot's action space.
arXiv Detail & Related papers (2021-05-21T15:13:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.