HMamba: Hyperbolic Mamba for Sequential Recommendation
- URL: http://arxiv.org/abs/2505.09205v1
- Date: Wed, 14 May 2025 07:34:36 GMT
- Title: HMamba: Hyperbolic Mamba for Sequential Recommendation
- Authors: Qianru Zhang, Honggang Wen, Wei Yuan, Crystal Chen, Menglin Yang, Siu-Ming Yiu, Hongzhi Yin,
- Abstract summary: Hyperbolic Mamba is a novel architecture that unifies the efficiency of Mamba's selective state space mechanism with hyperbolic geometry's hierarchical representational power.<n>We show that Hyperbolic Mamba achieves 3-11% improvement while retaining Mamba's linear-time efficiency, enabling real-world deployment.
- Score: 39.60869234694072
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Sequential recommendation systems have become a cornerstone of personalized services, adept at modeling the temporal evolution of user preferences by capturing dynamic interaction sequences. Existing approaches predominantly rely on traditional models, including RNNs and Transformers. Despite their success in local pattern recognition, Transformer-based methods suffer from quadratic computational complexity and a tendency toward superficial attention patterns, limiting their ability to infer enduring preference hierarchies in sequential recommendation data. Recent advances in Mamba-based sequential models introduce linear-time efficiency but remain constrained by Euclidean geometry, failing to leverage the intrinsic hyperbolic structure of recommendation data. To bridge this gap, we propose Hyperbolic Mamba, a novel architecture that unifies the efficiency of Mamba's selective state space mechanism with hyperbolic geometry's hierarchical representational power. Our framework introduces (1) a hyperbolic selective state space that maintains curvature-aware sequence modeling and (2) stabilized Riemannian operations to enable scalable training. Experiments across four benchmarks demonstrate that Hyperbolic Mamba achieves 3-11% improvement while retaining Mamba's linear-time efficiency, enabling real-world deployment. This work establishes a new paradigm for efficient, hierarchy-aware sequential modeling.
Related papers
- Routing Mamba: Scaling State Space Models with Mixture-of-Experts Projection [88.47928738482719]
Linear State Space Models (SSMs) offer remarkable performance gains in sequence modeling.<n>Recent advances, such as Mamba, further enhance SSMs with input-dependent gating and hardware-aware implementations.<n>We introduce Routing Mamba (RoM), a novel approach that scales SSM parameters using sparse mixtures of linear projection experts.
arXiv Detail & Related papers (2025-06-22T19:26:55Z) - Sequential-Parallel Duality in Prefix Scannable Models [68.39855814099997]
Recent developments have given rise to various models, such as Gated Linear Attention (GLA) and Mamba.<n>This raises a natural question: can we characterize the full class of neural sequence models that support near-constant-time parallel evaluation and linear-time, constant-space sequential inference?
arXiv Detail & Related papers (2025-06-12T17:32:02Z) - ss-Mamba: Semantic-Spline Selective State-Space Model [0.0]
ss-Mamba is a novel foundation model that enhances time series forecasting by integrating semantic-aware embeddings and adaptive spline-based temporal encoding.<n>We show that ss-Mamba delivers superior accuracy, robustness, and interpretability, demonstrating its capability as a versatile and computationally efficient alternative to traditional Transformer-based models in time-series forecasting.
arXiv Detail & Related papers (2025-06-03T03:26:57Z) - Mamba-CL: Optimizing Selective State Space Model in Null Space for Continual Learning [54.19222454702032]
Continual Learning aims to equip AI models with the ability to learn a sequence of tasks over time, without forgetting previously learned knowledge.
State Space Models (SSMs) have achieved notable success in computer vision.
We introduce Mamba-CL, a framework that continuously fine-tunes the core SSMs of the large-scale Mamba foundation model.
arXiv Detail & Related papers (2024-11-23T06:36:16Z) - State-space models are accurate and efficient neural operators for dynamical systems [23.59679792068364]
Physics-informed machine learning (PIML) has emerged as a promising alternative to classical methods for predicting dynamical systems.<n>Existing models, including recurrent neural networks (RNNs), transformers, and neural operators, face challenges such as long-time integration, long-range dependencies, chaotic dynamics, and extrapolation.<n>This paper introduces state-space models implemented in Mamba for accurate and efficient dynamical system operator learning.
arXiv Detail & Related papers (2024-09-05T03:57:28Z) - SIGMA: Selective Gated Mamba for Sequential Recommendation [56.85338055215429]
Mamba, a recent advancement, has exhibited exceptional performance in time series prediction.<n>We introduce a new framework named Selective Gated Mamba ( SIGMA) for Sequential Recommendation.<n>Our results indicate that SIGMA outperforms current models on five real-world datasets.
arXiv Detail & Related papers (2024-08-21T09:12:59Z) - MambaVT: Spatio-Temporal Contextual Modeling for robust RGB-T Tracking [51.28485682954006]
We propose a pure Mamba-based framework (MambaVT) to fully exploit intrinsic-temporal contextual modeling for robust visible-thermal tracking.
Specifically, we devise the long-range cross-frame integration component to globally adapt to target appearance variations.
Experiments show the significant potential of vision Mamba for RGB-T tracking, with MambaVT achieving state-of-the-art performance on four mainstream benchmarks.
arXiv Detail & Related papers (2024-08-15T02:29:00Z) - DiM-Gesture: Co-Speech Gesture Generation with Adaptive Layer Normalization Mamba-2 framework [2.187990941788468]
generative model crafted to create highly personalized 3D full-body gestures solely from raw speech audio.
Model integrates a Mamba-based fuzzy feature extractor with a non-autoregressive Adaptive Layer Normalization (AdaLN) Mamba-2 diffusion architecture.
arXiv Detail & Related papers (2024-08-01T08:22:47Z) - SHMamba: Structured Hyperbolic State Space Model for Audio-Visual Question Answering [5.016335384639901]
Multi-modal input of Audio-Visual Question Answering (AVQA) makes feature extraction and fusion processes more challenging.
We propose SHMamba: Structured Hyperbolic State Space Model to integrate the advantages of hyperbolic geometry and state space models.
Our method demonstrates superiority among all current major methods and is more suitable for practical application scenarios.
arXiv Detail & Related papers (2024-06-14T08:43:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.