FedSaaS: Class-Consistency Federated Semantic Segmentation via Global Prototype Supervision and Local Adversarial Harmonization
- URL: http://arxiv.org/abs/2505.09385v1
- Date: Wed, 14 May 2025 13:38:30 GMT
- Title: FedSaaS: Class-Consistency Federated Semantic Segmentation via Global Prototype Supervision and Local Adversarial Harmonization
- Authors: Xiaoyang Yu, Xiaoming Wu, Xin Wang, Dongrun Li, Ming Yang, Peng Cheng,
- Abstract summary: Federated semantic segmentation enables pixel-level classification in images through collaborative learning.<n>We propose a novel framework that strikes class consistency, termed FedSaaS.<n>Our framework significantly improves average segmentation accuracy and effectively addresses the class-consistency representation problem.
- Score: 14.90727017126931
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated semantic segmentation enables pixel-level classification in images through collaborative learning while maintaining data privacy. However, existing research commonly overlooks the fine-grained class relationships within the semantic space when addressing heterogeneous problems, particularly domain shift. This oversight results in ambiguities between class representation. To overcome this challenge, we propose a novel federated segmentation framework that strikes class consistency, termed FedSaaS. Specifically, we introduce class exemplars as a criterion for both local- and global-level class representations. On the server side, the uploaded class exemplars are leveraged to model class prototypes, which supervise global branch of clients, ensuring alignment with global-level representation. On the client side, we incorporate an adversarial mechanism to harmonize contributions of global and local branches, leading to consistent output. Moreover, multilevel contrastive losses are employed on both sides to enforce consistency between two-level representations in the same semantic space. Extensive experiments on several driving scene segmentation datasets demonstrate that our framework outperforms state-of-the-art methods, significantly improving average segmentation accuracy and effectively addressing the class-consistency representation problem.
Related papers
- Federated Unsupervised Semantic Segmentation [14.64737842208937]
This work explores the application of Federated Learning (FL) in Unsupervised Semantic image (USS)<n>FUSS is the first framework to enable fully decentralized, label-free semantic segmentation training.<n>Experiments on both benchmark and real-world datasets, including binary and multi-class segmentation tasks, show that FUSS consistently outperforms local-only client trainings.
arXiv Detail & Related papers (2025-05-29T09:43:55Z) - FedCCL: Federated Dual-Clustered Feature Contrast Under Domain Heterogeneity [43.71967577443732]
Federated learning (FL) facilitates a privacy-preserving neural network training paradigm through collaboration between edge clients and a central server.
Recent research is limited to simply using averaged signals as a form of regularization and only focusing on one aspect of these non-IID challenges.
We propose a dual-clustered feature contrast-based FL framework with dual focuses.
arXiv Detail & Related papers (2024-04-14T13:56:30Z) - Navigating Alignment for Non-identical Client Class Sets: A Label
Name-Anchored Federated Learning Framework [26.902679793955972]
FedAlign is a novel framework to align latent spaces across clients from both label and data perspectives.
From a label perspective, we leverage the expressive natural language class names as a common ground for label encoders to anchor class representations.
From a data perspective, we regard the global class representations as anchors and leverage the data points that are close/far enough to the anchors of locally-unaware classes to align the data encoders across clients.
arXiv Detail & Related papers (2023-01-01T23:17:30Z) - You Never Cluster Alone [150.94921340034688]
We extend the mainstream contrastive learning paradigm to a cluster-level scheme, where all the data subjected to the same cluster contribute to a unified representation.
We define a set of categorical variables as clustering assignment confidence, which links the instance-level learning track with the cluster-level one.
By reparametrizing the assignment variables, TCC is trained end-to-end, requiring no alternating steps.
arXiv Detail & Related papers (2021-06-03T14:59:59Z) - Federated Unsupervised Representation Learning [56.715917111878106]
We formulate a new problem in federated learning called Federated Unsupervised Representation Learning (FURL) to learn a common representation model without supervision.
FedCA is composed of two key modules: dictionary module to aggregate the representations of samples from each client and share with all clients for consistency of representation space and alignment module to align the representation of each client on a base model trained on a public data.
arXiv Detail & Related papers (2020-10-18T13:28:30Z) - Joint Visual and Temporal Consistency for Unsupervised Domain Adaptive
Person Re-Identification [64.37745443119942]
This paper jointly enforces visual and temporal consistency in the combination of a local one-hot classification and a global multi-class classification.
Experimental results on three large-scale ReID datasets demonstrate the superiority of proposed method in both unsupervised and unsupervised domain adaptive ReID tasks.
arXiv Detail & Related papers (2020-07-21T14:31:27Z) - Classes Matter: A Fine-grained Adversarial Approach to Cross-domain
Semantic Segmentation [95.10255219396109]
We propose a fine-grained adversarial learning strategy for class-level feature alignment.
We adopt a fine-grained domain discriminator that not only plays as a domain distinguisher, but also differentiates domains at class level.
An analysis with Class Center Distance (CCD) validates that our fine-grained adversarial strategy achieves better class-level alignment.
arXiv Detail & Related papers (2020-07-17T20:50:59Z) - Contextual-Relation Consistent Domain Adaptation for Semantic
Segmentation [44.19436340246248]
This paper presents an innovative local contextual-relation consistent domain adaptation technique.
It aims to achieve local-level consistencies during the global-level alignment.
Experiments demonstrate its superior segmentation performance as compared with state-of-the-art methods.
arXiv Detail & Related papers (2020-07-05T19:00:46Z) - Alleviating Semantic-level Shift: A Semi-supervised Domain Adaptation
Method for Semantic Segmentation [97.8552697905657]
A key challenge of this task is how to alleviate the data distribution discrepancy between the source and target domains.
We propose Alleviating Semantic-level Shift (ASS), which can successfully promote the distribution consistency from both global and local views.
We apply our ASS to two domain adaptation tasks, from GTA5 to Cityscapes and from Synthia to Cityscapes.
arXiv Detail & Related papers (2020-04-02T03:25:05Z) - Cross-domain Detection via Graph-induced Prototype Alignment [114.8952035552862]
We propose a Graph-induced Prototype Alignment (GPA) framework to seek for category-level domain alignment.
In addition, in order to alleviate the negative effect of class-imbalance on domain adaptation, we design a Class-reweighted Contrastive Loss.
Our approach outperforms existing methods with a remarkable margin.
arXiv Detail & Related papers (2020-03-28T17:46:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.