Contextual-Relation Consistent Domain Adaptation for Semantic
Segmentation
- URL: http://arxiv.org/abs/2007.02424v2
- Date: Wed, 15 Jul 2020 12:22:36 GMT
- Title: Contextual-Relation Consistent Domain Adaptation for Semantic
Segmentation
- Authors: Jiaxing Huang, Shijian Lu, Dayan Guan, and Xiaobing Zhang
- Abstract summary: This paper presents an innovative local contextual-relation consistent domain adaptation technique.
It aims to achieve local-level consistencies during the global-level alignment.
Experiments demonstrate its superior segmentation performance as compared with state-of-the-art methods.
- Score: 44.19436340246248
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in unsupervised domain adaptation for semantic segmentation
have shown great potentials to relieve the demand of expensive per-pixel
annotations. However, most existing works address the domain discrepancy by
aligning the data distributions of two domains at a global image level whereas
the local consistencies are largely neglected. This paper presents an
innovative local contextual-relation consistent domain adaptation (CrCDA)
technique that aims to achieve local-level consistencies during the
global-level alignment. The idea is to take a closer look at region-wise
feature representations and align them for local-level consistencies.
Specifically, CrCDA learns and enforces the prototypical local
contextual-relations explicitly in the feature space of a labelled source
domain while transferring them to an unlabelled target domain via
backpropagation-based adversarial learning. An adaptive entropy max-min
adversarial learning scheme is designed to optimally align these hundreds of
local contextual-relations across domain without requiring discriminator or
extra computation overhead. The proposed CrCDA has been evaluated extensively
over two challenging domain adaptive segmentation tasks (e.g., GTA5 to
Cityscapes and SYNTHIA to Cityscapes), and experiments demonstrate its superior
segmentation performance as compared with state-of-the-art methods.
Related papers
- PiPa++: Towards Unification of Domain Adaptive Semantic Segmentation via Self-supervised Learning [34.786268652516355]
Unsupervised domain adaptive segmentation aims to improve the segmentation accuracy of models on target domains without relying on labeled data from those domains.
It seeks to align the feature representations of the source domain (where labeled data is available) and the target domain (where only unlabeled data is present)
arXiv Detail & Related papers (2024-07-24T08:53:29Z) - CDA: Contrastive-adversarial Domain Adaptation [11.354043674822451]
We propose a two-stage model for domain adaptation called textbfContrastive-adversarial textbfDomain textbfAdaptation textbf(CDA).
While the adversarial component facilitates domain-level alignment, two-stage contrastive learning exploits class information to achieve higher intra-class compactness across domains.
arXiv Detail & Related papers (2023-01-10T07:43:21Z) - Domain Adaptive Semantic Segmentation with Regional Contrastive
Consistency Regularization [19.279884432843822]
We propose a novel and fully end-to-end trainable approach, called regional contrastive consistency regularization (RCCR) for domain adaptive semantic segmentation.
Our core idea is to pull the similar regional features extracted from the same location of different images to be closer, and meanwhile push the features from the different locations of the two images to be separated.
arXiv Detail & Related papers (2021-10-11T11:45:00Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
Unsupervised domain adaptation for object detection is a challenging problem with many real-world applications.
We propose a novel augmented feature alignment network (AFAN) which integrates intermediate domain image generation and domain-adversarial training.
Our approach significantly outperforms the state-of-the-art methods on standard benchmarks for both similar and dissimilar domain adaptations.
arXiv Detail & Related papers (2021-06-10T05:01:20Z) - More Separable and Easier to Segment: A Cluster Alignment Method for
Cross-Domain Semantic Segmentation [41.81843755299211]
We propose a new UDA semantic segmentation approach based on domain assumption closeness to alleviate the above problems.
Specifically, a prototype clustering strategy is applied to cluster pixels with the same semantic, which will better maintain associations among target domain pixels.
Experiments conducted on GTA5 and SYNTHIA proved the effectiveness of our method.
arXiv Detail & Related papers (2021-05-07T10:24:18Z) - MLAN: Multi-Level Adversarial Network for Domain Adaptive Semantic
Segmentation [32.77436219094282]
This paper presents a novel multi-level adversarial network (MLAN) that aims to address inter-domain inconsistency at both global image level and local region level optimally.
MLAN has two novel designs, namely, region-level adversarial learning (RL-AL) and co-regularized adversarial learning (CR-AL)
Extensive experiments show that MLAN outperforms the state-of-the-art with a large margin consistently across multiple datasets.
arXiv Detail & Related papers (2021-03-24T05:13:23Z) - Cross-Domain Grouping and Alignment for Domain Adaptive Semantic
Segmentation [74.3349233035632]
Existing techniques to adapt semantic segmentation networks across the source and target domains within deep convolutional neural networks (CNNs) do not consider an inter-class variation within the target domain itself or estimated category.
We introduce a learnable clustering module, and a novel domain adaptation framework called cross-domain grouping and alignment.
Our method consistently boosts the adaptation performance in semantic segmentation, outperforming the state-of-the-arts on various domain adaptation settings.
arXiv Detail & Related papers (2020-12-15T11:36:21Z) - Affinity Space Adaptation for Semantic Segmentation Across Domains [57.31113934195595]
In this paper, we address the problem of unsupervised domain adaptation (UDA) in semantic segmentation.
Motivated by the fact that source and target domain have invariant semantic structures, we propose to exploit such invariance across domains.
We develop two affinity space adaptation strategies: affinity space cleaning and adversarial affinity space alignment.
arXiv Detail & Related papers (2020-09-26T10:28:11Z) - Spatial Attention Pyramid Network for Unsupervised Domain Adaptation [66.75008386980869]
Unsupervised domain adaptation is critical in various computer vision tasks.
We design a new spatial attention pyramid network for unsupervised domain adaptation.
Our method performs favorably against the state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2020-03-29T09:03:23Z) - Bi-Directional Generation for Unsupervised Domain Adaptation [61.73001005378002]
Unsupervised domain adaptation facilitates the unlabeled target domain relying on well-established source domain information.
Conventional methods forcefully reducing the domain discrepancy in the latent space will result in the destruction of intrinsic data structure.
We propose a Bi-Directional Generation domain adaptation model with consistent classifiers interpolating two intermediate domains to bridge source and target domains.
arXiv Detail & Related papers (2020-02-12T09:45:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.