Rhomboid Tiling for Geometric Graph Deep Learning
- URL: http://arxiv.org/abs/2505.09586v1
- Date: Wed, 14 May 2025 17:37:15 GMT
- Title: Rhomboid Tiling for Geometric Graph Deep Learning
- Authors: Yipeng Zhang, Longlong Li, Kelin Xia,
- Abstract summary: We propose Rhomboid Tiling (RT) clustering, a novel clustering method based on the rhomboid tiling structure.<n>We also design RTPool, a hierarchical graph clustering pooling model based on RT clustering for graph classification tasks.<n>The proposed model demonstrates superior performance, outperforming 21 state-of-the-art competitors on all the 7 benchmark datasets.
- Score: 13.249882613696476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have proven effective for learning from graph-structured data through their neighborhood-based message passing framework. Many hierarchical graph clustering pooling methods modify this framework by introducing clustering-based strategies, enabling the construction of more expressive and powerful models. However, all of these message passing framework heavily rely on the connectivity structure of graphs, limiting their ability to capture the rich geometric features inherent in geometric graphs. To address this, we propose Rhomboid Tiling (RT) clustering, a novel clustering method based on the rhomboid tiling structure, which performs clustering by leveraging the complex geometric information of the data and effectively extracts its higher-order geometric structures. Moreover, we design RTPool, a hierarchical graph clustering pooling model based on RT clustering for graph classification tasks. The proposed model demonstrates superior performance, outperforming 21 state-of-the-art competitors on all the 7 benchmark datasets.
Related papers
- GLANCE: Graph Logic Attention Network with Cluster Enhancement for Heterophilous Graph Representation Learning [54.60090631330295]
Graph Neural Networks (GNNs) have demonstrated significant success in learning from graph-structured data but often struggle on heterophilous graphs.<n>We propose GLANCE, a novel framework that integrates logic-guided reasoning, dynamic graph refinement, and adaptive clustering to enhance graph representation learning.
arXiv Detail & Related papers (2025-07-24T15:45:26Z) - Unsupervised Graph Clustering with Deep Structural Entropy [25.38926876388394]
DeSE is a novel unsupervised graph clustering framework incorporating Deep Structural Entropy.<n>It enhances the original graph with quantified structural information and deep neural networks to form clusters.<n>Our clustering assignment method learns node embeddings and a soft assignment matrix to cluster on the enhanced graph.
arXiv Detail & Related papers (2025-05-20T07:38:06Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - Homophily-enhanced Structure Learning for Graph Clustering [19.586401211161846]
Graph structure learning allows refining the input graph by adding missing links and removing spurious connections.
Previous endeavors in graph structure learning have predominantly centered around supervised settings.
We propose a novel method called textbfhomophily-enhanced structure textbflearning for graph clustering (HoLe)
arXiv Detail & Related papers (2023-08-10T02:53:30Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
We propose a novel graph clustering network called Embedding-Induced Graph Refinement Clustering Network (EGRC-Net)
EGRC-Net effectively utilizes the learned embedding to adaptively refine the initial graph and enhance the clustering performance.
Our proposed methods consistently outperform several state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-19T09:08:43Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - CommPOOL: An Interpretable Graph Pooling Framework for Hierarchical
Graph Representation Learning [74.90535111881358]
We propose a new interpretable graph pooling framework - CommPOOL.
It can capture and preserve the hierarchical community structure of graphs in the graph representation learning process.
CommPOOL is a general and flexible framework for hierarchical graph representation learning.
arXiv Detail & Related papers (2020-12-10T21:14:18Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
We propose a graph learning framework to preserve both the local and global structure of data.
Our method uses the self-expressiveness of samples to capture the global structure and adaptive neighbor approach to respect the local structure.
Our model is equivalent to a combination of kernel k-means and k-means methods under certain condition.
arXiv Detail & Related papers (2020-08-31T08:41:20Z) - Graph Clustering with Graph Neural Networks [5.305362965553278]
Graph Neural Networks (GNNs) have achieved state-of-the-art results on many graph analysis tasks.
Unsupervised problems on graphs, such as graph clustering, have proved more resistant to advances in GNNs.
We introduce Deep Modularity Networks (DMoN), an unsupervised pooling method inspired by the modularity measure of clustering quality.
arXiv Detail & Related papers (2020-06-30T15:30:49Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
Graph-based clustering plays an important role in the clustering area.
Recent studies about graph convolution neural networks have achieved impressive success on graph type data.
We propose a graph auto-encoder for general data clustering, which constructs the graph adaptively according to the generative perspective of graphs.
arXiv Detail & Related papers (2020-02-20T10:11:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.