Unsupervised Graph Clustering with Deep Structural Entropy
- URL: http://arxiv.org/abs/2505.14040v1
- Date: Tue, 20 May 2025 07:38:06 GMT
- Title: Unsupervised Graph Clustering with Deep Structural Entropy
- Authors: Jingyun Zhang, Hao Peng, Li Sun, Guanlin Wu, Chunyang Liu, Zhengtao Yu,
- Abstract summary: DeSE is a novel unsupervised graph clustering framework incorporating Deep Structural Entropy.<n>It enhances the original graph with quantified structural information and deep neural networks to form clusters.<n>Our clustering assignment method learns node embeddings and a soft assignment matrix to cluster on the enhanced graph.
- Score: 25.38926876388394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Research on Graph Structure Learning (GSL) provides key insights for graph-based clustering, yet current methods like Graph Neural Networks (GNNs), Graph Attention Networks (GATs), and contrastive learning often rely heavily on the original graph structure. Their performance deteriorates when the original graph's adjacency matrix is too sparse or contains noisy edges unrelated to clustering. Moreover, these methods depend on learning node embeddings and using traditional techniques like k-means to form clusters, which may not fully capture the underlying graph structure between nodes. To address these limitations, this paper introduces DeSE, a novel unsupervised graph clustering framework incorporating Deep Structural Entropy. It enhances the original graph with quantified structural information and deep neural networks to form clusters. Specifically, we first propose a method for calculating structural entropy with soft assignment, which quantifies structure in a differentiable form. Next, we design a Structural Learning layer (SLL) to generate an attributed graph from the original feature data, serving as a target to enhance and optimize the original structural graph, thereby mitigating the issue of sparse connections between graph nodes. Finally, our clustering assignment method (ASS), based on GNNs, learns node embeddings and a soft assignment matrix to cluster on the enhanced graph. The ASS layer can be stacked to meet downstream task requirements, minimizing structural entropy for stable clustering and maximizing node consistency with edge-based cross-entropy loss. Extensive comparative experiments are conducted on four benchmark datasets against eight representative unsupervised graph clustering baselines, demonstrating the superiority of the DeSE in both effectiveness and interpretability.
Related papers
- GLANCE: Graph Logic Attention Network with Cluster Enhancement for Heterophilous Graph Representation Learning [54.60090631330295]
Graph Neural Networks (GNNs) have demonstrated significant success in learning from graph-structured data but often struggle on heterophilous graphs.<n>We propose GLANCE, a novel framework that integrates logic-guided reasoning, dynamic graph refinement, and adaptive clustering to enhance graph representation learning.
arXiv Detail & Related papers (2025-07-24T15:45:26Z) - Rhomboid Tiling for Geometric Graph Deep Learning [13.249882613696476]
We propose Rhomboid Tiling (RT) clustering, a novel clustering method based on the rhomboid tiling structure.<n>We also design RTPool, a hierarchical graph clustering pooling model based on RT clustering for graph classification tasks.<n>The proposed model demonstrates superior performance, outperforming 21 state-of-the-art competitors on all the 7 benchmark datasets.
arXiv Detail & Related papers (2025-05-14T17:37:15Z) - Deep Cut-informed Graph Embedding and Clustering [36.17182061654739]
We propose an innovative and non-GNN-based Deep Cut-informed Graph embedding and Clustering framework, namely DCGC.<n>For the encoding module, we derive a cut-informed graph embedding objective to fuse graph structure and attributes by minimizing their joint normalized cut.<n>For the clustering module, we utilize the optimal transport theory to obtain the clustering assignments.
arXiv Detail & Related papers (2025-03-09T14:24:09Z) - Synergistic Deep Graph Clustering Network [14.569867830074292]
We propose a graph clustering framework named Synergistic Deep Graph Clustering Network (SynC)
In our approach, we design a Transform Input Graph Auto-Encoder (TIGAE) to obtain high-quality embeddings for guiding structure augmentation.
Notably, representation learning and structure augmentation share weights, significantly reducing the number of model parameters.
arXiv Detail & Related papers (2024-06-22T09:40:34Z) - LSEnet: Lorentz Structural Entropy Neural Network for Deep Graph Clustering [59.89626219328127]
Graph clustering is a fundamental problem in machine learning.
Deep learning methods achieve the state-of-the-art results in recent years, but they still cannot work without predefined cluster numbers.
We propose to address this problem from a fresh perspective of graph information theory.
arXiv Detail & Related papers (2024-05-20T05:46:41Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - Homophily-enhanced Structure Learning for Graph Clustering [19.586401211161846]
Graph structure learning allows refining the input graph by adding missing links and removing spurious connections.
Previous endeavors in graph structure learning have predominantly centered around supervised settings.
We propose a novel method called textbfhomophily-enhanced structure textbflearning for graph clustering (HoLe)
arXiv Detail & Related papers (2023-08-10T02:53:30Z) - SE-GSL: A General and Effective Graph Structure Learning Framework
through Structural Entropy Optimization [67.28453445927825]
Graph Neural Networks (GNNs) are de facto solutions to structural data learning.
Existing graph structure learning (GSL) frameworks still lack robustness and interpretability.
This paper proposes a general GSL framework, SE-GSL, through structural entropy and the graph hierarchy abstracted in the encoding tree.
arXiv Detail & Related papers (2023-03-17T05:20:24Z) - EGRC-Net: Embedding-induced Graph Refinement Clustering Network [66.44293190793294]
We propose a novel graph clustering network called Embedding-Induced Graph Refinement Clustering Network (EGRC-Net)
EGRC-Net effectively utilizes the learned embedding to adaptively refine the initial graph and enhance the clustering performance.
Our proposed methods consistently outperform several state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-19T09:08:43Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - CAGNN: Cluster-Aware Graph Neural Networks for Unsupervised Graph
Representation Learning [19.432449825536423]
Unsupervised graph representation learning aims to learn low-dimensional node embeddings without supervision.
We present a novel cluster-aware graph neural network (CAGNN) model for unsupervised graph representation learning using self-supervised techniques.
arXiv Detail & Related papers (2020-09-03T13:57:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.