Quantifying complexity of continuous-variable quantum states via Wehrl entropy and Fisher information
- URL: http://arxiv.org/abs/2505.09613v1
- Date: Wed, 14 May 2025 17:59:31 GMT
- Title: Quantifying complexity of continuous-variable quantum states via Wehrl entropy and Fisher information
- Authors: Siting Tang, Francesco Albarelli, Yue Zhang, Shunlong Luo, Matteo G. A. Paris,
- Abstract summary: We introduce a quantifier of complexity of continuous-variable states, e.g. quantum optical states, based on the Husimi quasiprobability distribution.<n>We analyze the basic properties of the quantifier and illustrate its features by evaluating complexity of Gaussian states and some relevant non-Gaussian states.
- Score: 8.52497147463548
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The notion of complexity of quantum states is quite different from uncertainty or information contents, and involves the tradeoff between its classical and quantum features. In this work, we we introduce a quantifier of complexity of continuous-variable states, e.g. quantum optical states, based on the Husimi quasiprobability distribution. This quantity is built upon two functions of the state: the Wehrl entropy, capturing the spread of the distribution, and the Fisher information with respect to location parameters, which captures the opposite behaviour, i.e. localization in phase space. We analyze the basic properties of the quantifier and illustrate its features by evaluating complexity of Gaussian states and some relevant non-Gaussian states. We further generalize the quantifier in terms of s-ordered phase-space distributions and illustrate its implications.
Related papers
- Grassmann Variational Monte Carlo with neural wave functions [45.935798913942904]
We formalize the framework introduced by Pfau et al.citepfau2024accurate in terms of Grassmann geometry of the Hilbert space.<n>We validate our approach on the Heisenberg quantum spin model on the square lattice, achieving highly accurate energies and physical observables for a large number of excited states.
arXiv Detail & Related papers (2025-07-14T13:53:13Z) - Tensor Cross Interpolation of Purities in Quantum Many-Body Systems [0.0]
In quantum many-body systems the exponential scaling of the Hilbert space with the number of degrees of freedom renders a complete state characterization.<n>Recently, a compact way of storing subregions' purities by encoding them as amplitudes of a fictitious quantum wave function, known as entanglement feature, was proposed.<n>In this work, we demonstrate that the entanglement feature can be efficiently defining using only a amount of samples in the number of degrees of freedom.
arXiv Detail & Related papers (2025-03-21T15:33:00Z) - Comparing quantum complexity and quantum fidelity [0.0]
We show that complexity provides the same information as quantum fidelity and is therefore capable of detecting quantum phase transitions.<n>We conclude that incorporating a notion of spatial locality into the computation of complexity is essential to uncover new physics.
arXiv Detail & Related papers (2025-03-12T13:04:57Z) - Entanglement entropy bounds for pure states of rapid decorrelation [0.0]
We construct high fidelity approximations of relatively low complexity for pure states of quantum lattice systems.<n>The applicability of the general results is demonstrated on the quantum Ising model in transverse field.<n>We establish an area-law type bound on the entanglement in the model's subcritical ground states, valid in all dimensions and up to the model's quantum phase transition.
arXiv Detail & Related papers (2024-06-14T17:28:03Z) - The relative entropy of coherence quantifies performance in Bayesian metrology [0.21111026813272177]
We show how a coherence measure can be applied to an ensemble of states.
We then prove that during parameter estimation, the ensemble relative entropy of coherence is equal to the difference between the information gained, and the optimal Holevo information.
arXiv Detail & Related papers (2024-01-29T10:11:15Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Complexity of Pure and Mixed Qubit Geodesic Paths on Curved Manifolds [0.0]
We propose an information geometric theoretical construct to describe and understand the complex behavior of evolutions of quantum systems in pure and mixed states.
We analytically show that the evolution of mixed quantum states in the Bloch ball is more complex than the evolution of pure states on the Bloch sphere.
arXiv Detail & Related papers (2022-09-21T21:11:31Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
We present a novel, non-parametric form for compactly representing entangled many-body quantum states.
The state is found to be highly compact, systematically improvable and efficient to sample.
It is also proven to be a universal approximator' for quantum states, able to capture any entangled many-body state with increasing data set size.
arXiv Detail & Related papers (2020-02-27T15:54:44Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.