Tensor Cross Interpolation of Purities in Quantum Many-Body Systems
- URL: http://arxiv.org/abs/2503.17230v2
- Date: Fri, 25 Apr 2025 08:53:21 GMT
- Title: Tensor Cross Interpolation of Purities in Quantum Many-Body Systems
- Authors: Dmytro Kolisnyk, Raimel A. Medina, Romain Vasseur, Maksym Serbyn,
- Abstract summary: In quantum many-body systems the exponential scaling of the Hilbert space with the number of degrees of freedom renders a complete state characterization.<n>Recently, a compact way of storing subregions' purities by encoding them as amplitudes of a fictitious quantum wave function, known as entanglement feature, was proposed.<n>In this work, we demonstrate that the entanglement feature can be efficiently defining using only a amount of samples in the number of degrees of freedom.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A defining feature of quantum many-body systems is the exponential scaling of the Hilbert space with the number of degrees of freedom. This exponential complexity na\"ively renders a complete state characterization, for instance via the complete set of bipartite Renyi entropies for all disjoint regions, a challenging task. Recently, a compact way of storing subregions' purities by encoding them as amplitudes of a fictitious quantum wave function, known as entanglement feature, was proposed. Notably, the entanglement feature can be a simple object even for highly entangled quantum states. However the complexity and practical usage of the entanglement feature for general quantum states has not been explored. In this work, we demonstrate that the entanglement feature can be efficiently learned using only a polynomial amount of samples in the number of degrees of freedom through the so-called tensor cross interpolation (TCI) algorithm, assuming it is expressible as a finite bond dimension MPS. We benchmark this learning process on Haar and random MPS states, confirming analytic expectations. Applying the TCI algorithm to quantum eigenstates of various one dimensional quantum systems, we identify cases where eigenstates have entanglement feature learnable with TCI. We conclude with possible applications of the learned entanglement feature, such as quantifying the distance between different entanglement patterns and finding the optimal one-dimensional ordering of physical indices in a given state, highlighting the potential utility of the proposed purity interpolation method.
Related papers
- Entanglement scaling in matrix product state representation of smooth functions and their shallow quantum circuit approximations [0.28917933888634956]
matrix product state (MPS) methods emerged as the most promising approach for constructing shallow quantum circuits.
We derive rigorous expansions for the decay of entanglement across bonds in the MPS representation depending on the smoothness of the input function.
We construct an improved MPS-based algorithm yielding shallow and accurate encoding quantum circuits.
arXiv Detail & Related papers (2024-12-06T17:31:35Z) - Nonlinear functions of quantum states [5.641998714611475]
We introduce the quantum state function (QSF) framework by extending the SWAP test via linear combination of unitaries and parameterized quantum circuits.<n>We develop quantum algorithms of fundamental tasks, achieving a sample complexity of $tildemathcalO (1/(varepsilon2kappa)$ for both von Neumann entropy estimation and quantum state fidelity calculations.
arXiv Detail & Related papers (2024-12-02T16:40:17Z) - Absolute dimensionality of quantum ensembles [41.94295877935867]
The dimension of a quantum state is traditionally seen as the number of superposed distinguishable states in a given basis.
We propose an absolute, i.e.basis-independent, notion of dimensionality for ensembles of quantum states.
arXiv Detail & Related papers (2024-09-03T09:54:15Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum channels, complex Stiefel manifolds, and optimization [45.9982965995401]
We establish a continuity relation between the topological space of quantum channels and the quotient of the complex Stiefel manifold.
The established relation can be applied to various quantum optimization problems.
arXiv Detail & Related papers (2024-08-19T09:15:54Z) - One-Shot Min-Entropy Calculation Of Classical-Quantum States And Its Application To Quantum Cryptography [21.823963925581868]
We develop a one-shot lower bound calculation technique for the min-entropy of a classical-quantum state.<n>It offers an alternative tight finite-data analysis for the BB84 quantum key distribution scheme.<n>It gives the best finite-key bound known to date for a variant of device independent quantum key distribution protocol.
arXiv Detail & Related papers (2024-06-21T15:11:26Z) - Many-body entropies and entanglement from polynomially-many local measurements [0.26388783516590225]
We show that efficient estimation strategies exist under the assumption that all the spatial correlation lengths are finite.
We argue that our method could be practically useful to detect bipartite mixed-state entanglement for large numbers of qubits available in today's quantum platforms.
arXiv Detail & Related papers (2023-11-14T12:13:15Z) - Quantification of Entanglement and Coherence with Purity Detection [16.01598003770752]
Entanglement and coherence are fundamental properties of quantum systems, promising to power near future quantum technologies.
Here, we demonstrate quantitative bounds to operationally useful entanglement and coherence.
Our research offers an efficient means of verifying large-scale quantum information processing.
arXiv Detail & Related papers (2023-08-14T11:03:40Z) - Determining the ability for universal quantum computing: Testing
controllability via dimensional expressivity [39.58317527488534]
Controllability tests can be used in the design of quantum devices to reduce the number of external controls.
We devise a hybrid quantum-classical algorithm based on a parametrized quantum circuit.
arXiv Detail & Related papers (2023-08-01T15:33:41Z) - Measuring Arbitrary Physical Properties in Analog Quantum Simulation [0.5999777817331317]
A central challenge in analog quantum simulation is to characterize desirable physical properties of quantum states produced in experiments.
We propose and analyze a scalable protocol that leverages the ergodic nature of generic quantum dynamics.
Our protocol excitingly promises to overcome limited controllability and, thus, enhance the versatility and utility of near-term quantum technologies.
arXiv Detail & Related papers (2022-12-05T19:00:01Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
We develop new and efficient quantum algorithms for fidelity estimation with provable performance guarantees.
Our algorithms use advanced quantum linear algebra techniques, such as the quantum singular value transformation.
We prove that fidelity estimation to any non-trivial constant additive accuracy is hard in general.
arXiv Detail & Related papers (2022-03-30T02:02:16Z) - Quantum Causal Unravelling [44.356294905844834]
We develop the first efficient method for unravelling the causal structure of the interactions in a multipartite quantum process.
Our algorithms can be used to identify processes that can be characterized efficiently with the technique of quantum process tomography.
arXiv Detail & Related papers (2021-09-27T16:28:06Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.