論文の概要: Detecting Musical Deepfakes
- arxiv url: http://arxiv.org/abs/2505.09633v1
- Date: Sat, 03 May 2025 21:45:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-18 22:55:23.188745
- Title: Detecting Musical Deepfakes
- Title(参考訳): 音楽のディープフェイク検出
- Authors: Nick Sunday,
- Abstract要約: 本研究では,FakeMusicCapsデータセットを用いたAI生成楽曲の検出について検討した。
実世界の逆境条件をシミュレートするため, テンポストレッチとピッチシフトをデータセットに適用した。
メルスペクトログラムは、修正されたオーディオから生成され、その後、畳み込みニューラルネットワークのトレーニングと評価に使用された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The proliferation of Text-to-Music (TTM) platforms has democratized music creation, enabling users to effortlessly generate high-quality compositions. However, this innovation also presents new challenges to musicians and the broader music industry. This study investigates the detection of AI-generated songs using the FakeMusicCaps dataset by classifying audio as either deepfake or human. To simulate real-world adversarial conditions, tempo stretching and pitch shifting were applied to the dataset. Mel spectrograms were generated from the modified audio, then used to train and evaluate a convolutional neural network. In addition to presenting technical results, this work explores the ethical and societal implications of TTM platforms, arguing that carefully designed detection systems are essential to both protecting artists and unlocking the positive potential of generative AI in music.
- Abstract(参考訳): テキスト・トゥ・ミュージック(TTM)プラットフォームの普及は、音楽制作を民主化し、ユーザーが力ずくで高品質な楽曲を制作できるようにする。
しかし、この革新は音楽家や幅広い音楽産業に新たな課題をもたらす。
本研究では,FakeMusicCapsデータセットを用いたAI生成楽曲の検出について,音声をディープフェイクか人間かの分類により検討した。
実世界の逆境条件をシミュレートするため, テンポストレッチとピッチシフトをデータセットに適用した。
メルスペクトログラムは、修正されたオーディオから生成され、その後、畳み込みニューラルネットワークのトレーニングと評価に使用された。
この研究は、技術的成果の提示に加えて、TTMプラットフォームの倫理的・社会的意味を探求し、慎重に設計された検出システムは、アーティストの保護と音楽における生成AIのポジティブな可能性の解放の両方に不可欠であると主張した。
関連論文リスト
- SONICS: Synthetic Or Not -- Identifying Counterfeit Songs [0.16777183511743465]
我々は、エンドツーエンド合成歌検出(SSD)のための新しいデータセットSONICSを紹介する。
歌唱における時間的長期依存性をモデル化することの重要性を強調した。
長い曲では、私たちのトップパフォーマンスの変種は、F1スコアでVTを8%上回り、より38%速く、メモリは26%減っています。
論文 参考訳(メタデータ) (2024-08-26T08:02:57Z) - Music Genre Classification with ResNet and Bi-GRU Using Visual
Spectrograms [4.354842354272412]
手動のジャンル分類の限界は、より高度なシステムの必要性を強調している。
従来の機械学習技術はジャンル分類の可能性を示してきたが、音楽データの完全な複雑さを捉えられなかった。
本研究では,視覚スペクトログラムを入力として用いる新しいアプローチを提案し,Residual Neural Network(ResNet)とGated Recurrent Unit(GRU)の強みを組み合わせたハイブリッドモデルを提案する。
論文 参考訳(メタデータ) (2023-07-20T11:10:06Z) - MARBLE: Music Audio Representation Benchmark for Universal Evaluation [79.25065218663458]
我々は,UniversaL Evaluation(MARBLE)のための音楽音響表現ベンチマークを紹介する。
音響、パフォーマンス、スコア、ハイレベルな記述を含む4つの階層レベルを持つ包括的分類を定義することで、様々な音楽情報検索(MIR)タスクのベンチマークを提供することを目的としている。
次に、8つの公開データセット上の14のタスクに基づいて統一されたプロトコルを構築し、ベースラインとして音楽録音で開発されたすべてのオープンソース事前学習モデルの表現を公平かつ標準的に評価する。
論文 参考訳(メタデータ) (2023-06-18T12:56:46Z) - GETMusic: Generating Any Music Tracks with a Unified Representation and
Diffusion Framework [58.64512825534638]
シンボリック・ミュージック・ジェネレーションは、ユーザーが音楽を作るのに役立つ音符を作成することを目的としている。
私たちは「GETMusic」と呼ばれるフレームワークを紹介します。「GET'」は「GEnerate Music Tracks」の略です。
GETScoreは、音符をトークンとして表現し、2D構造でトークンを整理する。
提案する表現は,非自己回帰生成モデルと組み合わせて,任意のソース・ターゲットトラックの組み合わせでGETMusicに音楽を生成する。
論文 参考訳(メタデータ) (2023-05-18T09:53:23Z) - Comparision Of Adversarial And Non-Adversarial LSTM Music Generative
Models [2.569647910019739]
この研究は、MIDIデータに基づいて、リカレントニューラルネットワーク音楽作曲家の敵対的および非敵対的な訓練を実装し、比較する。
この評価は, 対人訓練がより審美的に楽しむ音楽を生み出すことを示唆している。
論文 参考訳(メタデータ) (2022-11-01T20:23:49Z) - Quantized GAN for Complex Music Generation from Dance Videos [48.196705493763986]
D2M-GAN(Dance2Music-GAN, D2M-GAN, D2M-GAN)は、ダンスビデオに条件付けされた楽曲のサンプルを生成する新しいマルチモーダルフレームワークである。
提案フレームワークは,ダンスビデオフレームと人体の動きを入力とし,対応する入力に付随する音楽サンプルを生成することを学習する。
論文 参考訳(メタデータ) (2022-04-01T17:53:39Z) - Research on AI Composition Recognition Based on Music Rules [7.699648754969773]
モーメント抽出による楽曲ルール識別アルゴリズムを構築する。
それは、機械生成音楽のモードの安定性を特定し、それが人工知能であるかどうかを判断する。
論文 参考訳(メタデータ) (2020-10-15T14:51:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。