On Unbiased Low-Rank Approximation with Minimum Distortion
- URL: http://arxiv.org/abs/2505.09647v1
- Date: Mon, 12 May 2025 20:52:28 GMT
- Title: On Unbiased Low-Rank Approximation with Minimum Distortion
- Authors: Leighton Pate Barnes, Stephen Cameron, Benjamin Howard,
- Abstract summary: We describe an algorithm for sampling a low-rank random matrix $Q$ that best approximates a fixed target matrix $PinmathbbCntimes m$ in the following sense: $Q$ is unbiased, i.e., $mathbbE[Q] = P$; $mathsfrank(Q)leq r$; and $Q$ minimizes the expected Frobenius norm error $mathbbE|P-Q|_F2$.
- Score: 1.2016264781280588
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We describe an algorithm for sampling a low-rank random matrix $Q$ that best approximates a fixed target matrix $P\in\mathbb{C}^{n\times m}$ in the following sense: $Q$ is unbiased, i.e., $\mathbb{E}[Q] = P$; $\mathsf{rank}(Q)\leq r$; and $Q$ minimizes the expected Frobenius norm error $\mathbb{E}\|P-Q\|_F^2$. Our algorithm mirrors the solution to the efficient unbiased sparsification problem for vectors, except applied to the singular components of the matrix $P$. Optimality is proven by showing that our algorithm matches the error from an existing lower bound.
Related papers
- The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
We show that this problem has randomized communication complexity $Omega(frac1kcdot n2log|mathbbF|)$.
As an application, we obtain an $Omega(frac1kcdot n2log|mathbbF|)$ space lower bound for any streaming algorithm with $k$ passes.
arXiv Detail & Related papers (2024-10-26T06:21:42Z) - Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
We study the problem of residual error estimation for matrix and vector norms using a linear sketch.
We demonstrate that this gives a substantial advantage empirically, for roughly the same sketch size and accuracy as in previous work.
We also show an $Omega(k2/pn1-2/p)$ lower bound for the sparse recovery problem, which is tight up to a $mathrmpoly(log n)$ factor.
arXiv Detail & Related papers (2024-08-16T02:33:07Z) - Oja's Algorithm for Streaming Sparse PCA [7.059472280274011]
Oja's algorithm for Streaming Principal Component Analysis (PCA) for $n$ data-points in a $d$ dimensional space achieves the same sin-squared error $O(r_mathsfeff/n)$ as the offline algorithm in $O(d)$ space and $O(nd)$ time.<n>We show that a simple single-pass procedure that thresholds the output of Oja's algorithm can achieve the minimax error bound under some regularity conditions in $O(d)$ space and $O(nd)$ time.
arXiv Detail & Related papers (2024-02-11T16:36:48Z) - Efficient Alternating Minimization with Applications to Weighted Low Rank Approximation [9.10876982856809]
We develop a framework for alternating minimization that allows the alternating updates to be computed approximately.<n>At the heart of our framework is a high-accuracy multiple response regression solver together with a robust analysis of alternating minimization.
arXiv Detail & Related papers (2023-06-07T05:38:55Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
We introduce efficient $(1+varepsilon)$-approximation algorithms for the binary matrix factorization (BMF) problem.
The goal is to approximate $mathbfA$ as a product of low-rank factors.
Our techniques generalize to other common variants of the BMF problem.
arXiv Detail & Related papers (2023-06-02T18:55:27Z) - List-Decodable Sparse Mean Estimation via Difference-of-Pairs Filtering [42.526664955704746]
We develop a novel, conceptually simpler technique for list-decodable sparse mean estimation.
In particular, for distributions with "certifiably bounded" $t-th moments in $k$-sparse directions, our algorithm achieves error of $(1/alpha)O (1/t)$ with sample complexity $m = (klog(n))O(t)/alpha(mnt)$.
For the special case of Gaussian inliers, our algorithm achieves the optimal error guarantee of $Theta (sqrtlog
arXiv Detail & Related papers (2022-06-10T17:38:18Z) - Nonparametric Matrix Estimation with One-Sided Covariates [5.457150493905064]
We consider the task of matrix estimation in which a dataset $X in mathbbRntimes m$ is observed with sparsity $p$.
We provide an algorithm and analysis which shows that our algorithm improves upon naively estimating each row separately when the number of rows is not too small.
arXiv Detail & Related papers (2021-10-26T19:11:45Z) - Spectral properties of sample covariance matrices arising from random
matrices with independent non identically distributed columns [50.053491972003656]
It was previously shown that the functionals $texttr(AR(z))$, for $R(z) = (frac1nXXT- zI_p)-1$ and $Ain mathcal M_p$ deterministic, have a standard deviation of order $O(|A|_* / sqrt n)$.
Here, we show that $|mathbb E[R(z)] - tilde R(z)|_F
arXiv Detail & Related papers (2021-09-06T14:21:43Z) - Unique sparse decomposition of low rank matrices [17.037882881652617]
We find a unique decomposition of a low rank matrixYin mathbbRrtimes n$.
We prove that up to some $Yin mathRrtimes n$ is a sparse-wise decomposition of $Xin mathbbRrtimes n$.
arXiv Detail & Related papers (2021-06-14T20:05:59Z) - Sparse sketches with small inversion bias [79.77110958547695]
Inversion bias arises when averaging estimates of quantities that depend on the inverse covariance.
We develop a framework for analyzing inversion bias, based on our proposed concept of an $(epsilon,delta)$-unbiased estimator for random matrices.
We show that when the sketching matrix $S$ is dense and has i.i.d. sub-gaussian entries, the estimator $(epsilon,delta)$-unbiased for $(Atop A)-1$ with a sketch of size $m=O(d+sqrt d/
arXiv Detail & Related papers (2020-11-21T01:33:15Z) - Maximizing Determinants under Matroid Constraints [69.25768526213689]
We study the problem of finding a basis $S$ of $M$ such that $det(sum_i in Sv_i v_i v_itop)$ is maximized.
This problem appears in a diverse set of areas such as experimental design, fair allocation of goods, network design, and machine learning.
arXiv Detail & Related papers (2020-04-16T19:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.