論文の概要: Differentiable Quantum Architecture Search in Quantum-Enhanced Neural Network Parameter Generation
- arxiv url: http://arxiv.org/abs/2505.09653v1
- Date: Tue, 13 May 2025 19:01:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-16 22:29:06.037098
- Title: Differentiable Quantum Architecture Search in Quantum-Enhanced Neural Network Parameter Generation
- Title(参考訳): 量子強化ニューラルネットワークパラメータ生成における微分可能な量子アーキテクチャ探索
- Authors: Samuel Yen-Chi Chen, Chen-Yu Liu, Kuan-Cheng Chen, Wei-Jia Huang, Yen-Jui Chang, Wei-Hao Huang,
- Abstract要約: 量子ニューラルネットワーク(QNN)は、経験的にも理論的にも有望であることを示している。
ハードウェアの欠陥と量子デバイスへの限られたアクセスは、実用的な課題となる。
微分可能最適化を用いた自動解法を提案する。
- 参考スコア(独自算出の注目度): 4.358861563008207
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancements in quantum computing (QC) and machine learning (ML) have led to the emergence of quantum machine learning (QML), which integrates the strengths of both fields. Among QML approaches, variational quantum circuits (VQCs), also known as quantum neural networks (QNNs), have shown promise both empirically and theoretically. However, their broader adoption is hindered by reliance on quantum hardware during inference. Hardware imperfections and limited access to quantum devices pose practical challenges. To address this, the Quantum-Train (QT) framework leverages the exponential scaling of quantum amplitudes to generate classical neural network parameters, enabling inference without quantum hardware and achieving significant parameter compression. Yet, designing effective quantum circuit architectures for such quantum-enhanced neural programmers remains non-trivial and often requires expertise in quantum information science. In this paper, we propose an automated solution using differentiable optimization. Our method jointly optimizes both conventional circuit parameters and architectural parameters in an end-to-end manner via automatic differentiation. We evaluate the proposed framework on classification, time-series prediction, and reinforcement learning tasks. Simulation results show that our method matches or outperforms manually designed QNN architectures. This work offers a scalable and automated pathway for designing QNNs that can generate classical neural network parameters across diverse applications.
- Abstract(参考訳): 量子コンピューティング(QC)と機械学習(ML)の急速な進歩は、両方のフィールドの強みを統合する量子機械学習(QML)の出現につながっている。
QMLアプローチの中で、変分量子回路(VQCs)は量子ニューラルネットワーク(QNNs)としても知られ、経験的かつ理論的に有望であることが示されている。
しかしながら、より広範な採用は、推論中の量子ハードウェアへの依存によって妨げられる。
ハードウェアの欠陥と量子デバイスへの限られたアクセスは、実用的な課題となる。
これを解決するために、量子トレイン(QT)フレームワークは、量子振幅の指数的スケーリングを利用して古典的なニューラルネットワークパラメータを生成し、量子ハードウェアなしで推論を可能にし、重要なパラメータ圧縮を達成する。
しかし、そのような量子強化ニューラルプログラマーのための効果的な量子回路アーキテクチャを設計するのは簡単ではなく、しばしば量子情報科学の専門知識を必要とする。
本稿では,微分可能最適化を用いた自動解法を提案する。
本手法は,従来の回路パラメータとアーキテクチャパラメータの両方を,自動微分によりエンドツーエンドに最適化する。
本稿では,分類,時系列予測,強化学習タスクに関するフレームワークの評価を行った。
シミュレーションの結果,本手法は手作業で設計したQNNアーキテクチャと一致し,性能が良くなった。
この作業は、さまざまなアプリケーションにまたがる古典的なニューラルネットワークパラメータを生成することができるQNNを設計するためのスケーラブルで自動化されたパスを提供する。
関連論文リスト
- Q-Fusion: Diffusing Quantum Circuits [2.348041867134616]
本稿では、新しい量子回路を生成するためにLayerDAGフレームワークを利用する拡散型アルゴリズムを提案する。
本結果は,提案モデルが100%有効な量子回路出力を連続的に生成することを示す。
論文 参考訳(メタデータ) (2025-04-29T14:10:10Z) - Training Hybrid Deep Quantum Neural Network for Reinforcement Learning Efficiently [2.7812018782449073]
量子機械学習(QML)は、最近、新しい学際研究の方向性として登場した。
ノイズの多い中間スケール量子コンピュータと互換性のあるハイブリッドQMLモデルに関する最近の研究は、性能の向上を示唆している。
課題を克服し、PQCブロックによる効率的なバッチ最適化を示すスケーラブルなQMLアーキテクチャを提案する。
論文 参考訳(メタデータ) (2025-03-12T07:12:02Z) - The Impact of Architecture and Cost Function on Dissipative Quantum Neural Networks [0.016385815610837167]
本稿では,各ビルディングブロックが任意の量子チャネルを実装可能な,散逸型量子ニューラルネットワーク(DQNN)の新しいアーキテクチャを提案する。
アイソメトリの多目的な1対1パラメトリ化を導出し,提案手法の効率的な実装を可能にした。
論文 参考訳(メタデータ) (2025-02-13T17:38:48Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
我々は、ニューラルネットワークの量子対する最も有望な候補として登場した変分量子回路(VQC)に注目した。
有望な結果を示す一方で、バレン高原、重みの周期性、アーキテクチャの選択など、さまざまな問題のために、VQCのトレーニングは困難である。
本稿では,VQCの重みとアーキテクチャの両方を最適化するために,自然進化にインスパイアされた勾配のないアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-14T08:03:20Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
量子機械学習(QML)は、量子コンピューティングの発展に頼って、大規模な複雑な機械学習問題を探求する、有望な分野として登場した。
本稿では、量子データ上で動作し、量子回路パラメータの学習を分散的に共有できる初めての完全量子連合学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-30T12:19:27Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
超伝導量子プロセッサを用いた実世界の手書き桁画像の学習と生成を実験的に行う。
我々の研究は、短期量子デバイス上での高度な量子生成モデル開発のためのガイダンスを提供する。
論文 参考訳(メタデータ) (2020-10-13T06:57:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。