論文の概要: A Computational Pipeline for Advanced Analysis of 4D Flow MRI in the Left Atrium
- arxiv url: http://arxiv.org/abs/2505.09746v1
- Date: Wed, 14 May 2025 19:09:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-16 22:29:06.085441
- Title: A Computational Pipeline for Advanced Analysis of 4D Flow MRI in the Left Atrium
- Title(参考訳): 左心房内4次元流れMRIの高度解析のための計算パイプライン
- Authors: Xabier Morales, Ayah Elsayed, Debbie Zhao, Filip Loncaric, Ainhoa Aguado, Mireia Masias, Gina Quill, Marc Ramos, Ada Doltra, Ana Garcia, Marta Sitges, David Marlevi, Alistair Young, Martyn Nash, Bart Bijnens, Oscar Camara,
- Abstract要約: 左房は左室充填の調節において重要な役割を担っている。
4D Flow MRIは心房血行動態の理解を深める可能性を秘めている。
LAにおける4次元フローMRI解析に適したオープンソースの計算フレームワークについて紹介する。
- 参考スコア(独自算出の注目度): 0.09369849182888854
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The left atrium (LA) plays a pivotal role in modulating left ventricular filling, but our comprehension of its hemodynamics is significantly limited by the constraints of conventional ultrasound analysis. 4D flow magnetic resonance imaging (4D Flow MRI) holds promise for enhancing our understanding of atrial hemodynamics. However, the low velocities within the LA and the limited spatial resolution of 4D Flow MRI make analyzing this chamber challenging. Furthermore, the absence of dedicated computational frameworks, combined with diverse acquisition protocols and vendors, complicates gathering large cohorts for studying the prognostic value of hemodynamic parameters provided by 4D Flow MRI. In this study, we introduce the first open-source computational framework tailored for the analysis of 4D Flow MRI in the LA, enabling comprehensive qualitative and quantitative analysis of advanced hemodynamic parameters. Our framework proves robust to data from different centers of varying quality, producing high-accuracy automated segmentations (Dice $>$ 0.9 and Hausdorff 95 $<$ 3 mm), even with limited training data. Additionally, we conducted the first comprehensive assessment of energy, vorticity, and pressure parameters in the LA across a spectrum of disorders to investigate their potential as prognostic biomarkers.
- Abstract(参考訳): 左心房 (LA) は左室充填の調節に重要な役割を担っているが, 従来の超音波検査の制約により血行動態の理解は著しく制限されている。
4D Flow magnetic resonance imaging (4D Flow MRI) は心房血行動態の理解を深める可能性を秘めている。
しかし、LA内の低速度と4次元フローMRIの空間分解能の制限により、このチャンバーを解析することは困難である。
さらに、4次元フローMRIで提供される血行動態パラメータの予後値を研究するために、多種多様な取得プロトコルやベンダーと組み合わせた専用計算フレームワークの欠如は、大きなコホートを集めることを複雑にしている。
本研究では,LAにおける4次元フローMRI解析に適したオープンソースの計算フレームワークについて紹介し,より高度な血行動態パラメータの総合的定性的および定量的解析を可能にする。
我々のフレームワークは、異なる品質のセンターのデータに対して堅牢であり、限られたトレーニングデータであっても、高精度な自動セグメンテーション(Dice $>$ 0.9 と Hausdorff 95 $<$ 3 mm)を生成する。
さらに, LAにおけるエネルギー, 渦性, 圧力パラメータの包括的評価を行い, 予後指標としての可能性について検討した。
関連論文リスト
- Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
磁気共鳴イメージング(MRI)におけるオフ共鳴アーティファクトは、画像ボリューム内のスピンの実際の共鳴周波数が空間情報を符号化するのに使用される期待周波数と異なる場合に発生する視覚歪みである。
本稿では,2次元MRI再構成問題を3次元に引き上げ,このオフ共鳴をモデル化するための「スペクトル」次元を導入することで,これらのアーチファクトを解決することを提案する。
論文 参考訳(メタデータ) (2023-11-22T05:44:51Z) - Generalized super-resolution 4D Flow MRI $\unicode{x2013}$ using
ensemble learning to extend across the cardiovascular system [28.516235368817586]
本研究の目的は,異種トレーニングセットと専用アンサンブル学習を組み合わせたSR 4D Flow MRIの一般化可能性を検討することである。
その結果,バッギングと積み重ねはドメイン間のSR性能を向上し,低分解能入力データから高分解能速度を正確に予測できることが示唆された。
以上の結果から,本研究はSR 4D Flow MRIの汎用的アプローチとして,様々な臨床領域にまたがるアンサンブル学習の有用性を示すものである。
論文 参考訳(メタデータ) (2023-11-20T14:55:40Z) - Implicit neural representations for unsupervised super-resolution and
denoising of 4D flow MRI [1.207455285737927]
大動脈内3方向速度の時間変化に対するSIRENの4次元フローMRIによる検討を行った。
本手法をボクセル座標で訓練し, 合成計測と実際の4次元フローMRIによるアプローチをベンチマークした。
我々の最適化されたSIRENアーキテクチャは最先端技術より優れており、臨床データから解離・超解離速度場を生成する。
論文 参考訳(メタデータ) (2023-02-24T08:42:04Z) - Coarse-Super-Resolution-Fine Network (CoSF-Net): A Unified End-to-End
Neural Network for 4D-MRI with Simultaneous Motion Estimation and
Super-Resolution [21.75329634476446]
我々は,高分解能ネットワーク(CoSF-Net)と呼ばれる新しいディープラーニングフレームワークを開発した。
既存のネットワークと最先端の3つのアルゴリズムと比較して、CoSF-Netは4D-MRIの呼吸相間の変形可能なベクトル場を正確に推定するだけでなく、解剖学的特徴を増強した4D-MRIの空間分解能も同時に改善した。
論文 参考訳(メタデータ) (2022-11-21T01:42:51Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
本稿では,畳み込みニューラルネットワークや生成的敵ネットワークに基づく手法を含む,高速MRIのためのディープラーニングに基づくデータ駆動手法を紹介する。
MRI加速のための物理とデータ駆動モデルの結合に関する研究について詳述する。
最後に, 臨床応用について紹介し, マルチセンター・マルチスキャナー研究における高速MRI技術におけるデータ調和の重要性と説明可能なモデルについて述べる。
論文 参考訳(メタデータ) (2022-04-01T22:48:08Z) - Non-invasive hemodynamic analysis for aortic regurgitation using
computational fluid dynamics and deep learning [2.150638298922378]
心臓血管血行動態の変化は大動脈逆流(AR)の発生と密接に関連している
4次元(4次元)流磁気共鳴画像(MRI)を用いて非侵襲的に測定できる。
しかし、解像度の低さは、しばしば4次元フローMRIと複雑なAR血行動態の限界によって生じる。
これを解決するために、計算流体力学シミュレーションを合成された4次元フローMRIデータに変換し、様々なニューラルネットワークのトレーニングに使用した。
論文 参考訳(メタデータ) (2021-11-23T05:19:42Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
SISR(Single Image Super-Resolution)は、1つの低解像度入力画像から高解像度(HR)の詳細を得る技術である。
ディープラーニングは、大きなデータセットから事前知識を抽出し、低解像度の画像から優れたMRI画像を生成します。
論文 参考訳(メタデータ) (2021-02-25T14:52:23Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
本稿では,Slice-Interleaved Diffusionと呼ばれる拡散符号化方式を提案する。
SIDEは、拡散重み付き(DW)画像ボリュームを異なる拡散勾配で符号化したスライスでインターリーブする。
また,高いスライスアンサンプデータからDW画像を効果的に再構成するためのディープラーニングに基づく手法を提案する。
論文 参考訳(メタデータ) (2020-02-25T14:48:17Z) - Microvascular Dynamics from 4D Microscopy Using Temporal Segmentation [81.30750944868142]
経時的に脳血流量の変化を追跡でき, ピアル表面に向かって伝播する自発性動脈拡張を同定できる。
この新たなイメージング機能は、機能的磁気共鳴イメージング(fMRI)を基盤とした血行動態応答関数を特徴付けるための有望なステップである。
論文 参考訳(メタデータ) (2020-01-14T22:55:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。