Lossless Compression for LLM Tensor Incremental Snapshots
- URL: http://arxiv.org/abs/2505.09810v1
- Date: Wed, 14 May 2025 21:24:14 GMT
- Title: Lossless Compression for LLM Tensor Incremental Snapshots
- Authors: Daniel Waddington, Cornel Constantinescu,
- Abstract summary: We build an effective compression solution, known as Language Model (LMC)<n>We show that a 16-core parallel implementation of LMC can attain compression and decompression throughput of 2.78 GiB/s and 3.76 GiB/s respectively.<n>This increase in performance ultimately reduces the resources needed and provides more time to copy the data to the storage system before the next epoch thus allowing for higher-frequency checkpoints.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: During the training of Large Language Models (LLMs), tensor data is periodically "checkpointed" to persistent storage to allow recovery of work done in the event of failure. The volume of data that must be copied during each checkpoint, even when using reduced-precision representations such as bfloat16, often reaches hundreds of gigabytes. Furthermore, the data must be moved across a network and written to a storage system before the next epoch occurs. With a view to ultimately building an optimized checkpointing solution, this paper presents experimental analysis of checkpoint data used to derive a design that maximizes the use of lossless compression to reduce the volume of data. We examine how tensor data and its compressibility evolve during model training and evaluate the efficacy of existing common off-the-shelf general purpose compression engines combined with known data optimization techniques such as byte-grouping and incremental delta compression. Leveraging our analysis we have built an effective compression solution, known as Language Model Compressor (LMC), which is based on byte-grouping and Huffman encoding. LMC offers more compression performance than the best alternative (BZ2) but with an order-of-magnitude reduction in the time needed to perform the compression. We show that a 16-core parallel implementation of LMC can attain compression and decompression throughput of 2.78 GiB/s and 3.76 GiB/s respectively. This increase in performance ultimately reduces the CPU resources needed and provides more time to copy the data to the storage system before the next epoch thus allowing for higher-frequency checkpoints.
Related papers
- ReCalKV: Low-Rank KV Cache Compression via Head Reordering and Offline Calibration [81.81027217759433]
Large language models (LLMs) are often constrained by the excessive memory required to store the Key-Value ( KV) cache.<n>Recent methods have explored reducing the hidden dimensions of the KV cache, but many introduce additional computation through projection layers.<n>We propose ReCalKV, a post-training KV cache compression method that reduces the hidden dimensions of the KV cache.
arXiv Detail & Related papers (2025-05-30T08:49:27Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
Key-Value ( KV) cache is crucial component in serving transformer-based autoregressive large language models (LLMs)
Existing approaches to mitigate this issue include: (1) efficient attention variants integrated in upcycling stages; (2) KV cache compression at test time; and (3) KV cache compression at test time.
We propose a low-rank approximation of KV weight matrices, allowing plug-in integration with existing transformer-based LLMs without model retraining.
Our method is designed to function without model tuning in upcycling stages or task-specific profiling in test stages.
arXiv Detail & Related papers (2024-10-04T03:10:53Z) - Accelerating Communication in Deep Learning Recommendation Model Training with Dual-Level Adaptive Lossy Compression [10.233937665979694]
DLRM is a state-of-the-art recommendation system model that has gained widespread adoption across various industry applications.
A significant bottleneck in this process is the time-consuming all-to-all communication required to collect embedding data from all devices.
We introduce a method that employs error-bounded lossy compression to reduce the communication data size and accelerate DLRM training.
arXiv Detail & Related papers (2024-07-05T05:55:18Z) - Probing Image Compression For Class-Incremental Learning [8.711266563753846]
Continual machine learning (ML) systems rely on storing representative samples, also known as exemplars, within a limited memory constraint to maintain the performance on previously learned data.
In this paper, we explore the use of image compression as a strategy to enhance the buffer's capacity, thereby increasing exemplar diversity.
We introduce a new framework to incorporate image compression for continual ML including a pre-processing data compression step and an efficient compression rate/algorithm selection method.
arXiv Detail & Related papers (2024-03-10T18:58:14Z) - Inshrinkerator: Compressing Deep Learning Training Checkpoints via Dynamic Quantization [5.648270790530862]
State-of-the-art approaches involve lossy model compression mechanisms, which induce a tradeoff between the resulting model quality (accuracy) and compression ratio.
We make a key enabling observation that the sensitivity of model weights to compression varies during training, and different weights benefit from different quantization levels.
We propose a non-uniform quantization scheme that leverages this variation, an efficient search mechanism that dynamically finds the best quantization configurations, and a quantization-aware delta compression mechanism that rearranges weights to minimize checkpoint differences.
arXiv Detail & Related papers (2023-06-20T18:00:31Z) - GraVAC: Adaptive Compression for Communication-Efficient Distributed DL
Training [0.0]
Distributed data-parallel (DDP) training improves overall application throughput as multiple devices train on a subset of data and aggregate updates to produce a globally shared model.
GraVAC is a framework to dynamically adjust compression factor throughout training by evaluating model progress and assessing information loss associated with compression.
As opposed to using a static compression factor, GraVAC reduces end-to-end training time for ResNet101, VGG16 and LSTM by 4.32x, 1.95x and 6.67x respectively.
arXiv Detail & Related papers (2023-05-20T14:25:17Z) - Scalable Hybrid Learning Techniques for Scientific Data Compression [6.803722400888276]
Scientists require compression techniques that accurately preserve derived quantities of interest (QoIs)
This paper presents a physics-informed compression technique implemented as an end-to-end, scalable, GPU-based pipeline for data compression.
arXiv Detail & Related papers (2022-12-21T03:00:18Z) - Unrolled Compressed Blind-Deconvolution [77.88847247301682]
sparse multichannel blind deconvolution (S-MBD) arises frequently in many engineering applications such as radar/sonar/ultrasound imaging.
We propose a compression method that enables blind recovery from much fewer measurements with respect to the full received signal in time.
arXiv Detail & Related papers (2022-09-28T15:16:58Z) - Deep Lossy Plus Residual Coding for Lossless and Near-lossless Image
Compression [85.93207826513192]
We propose a unified and powerful deep lossy plus residual (DLPR) coding framework for both lossless and near-lossless image compression.
We solve the joint lossy and residual compression problem in the approach of VAEs.
In the near-lossless mode, we quantize the original residuals to satisfy a given $ell_infty$ error bound.
arXiv Detail & Related papers (2022-09-11T12:11:56Z) - Memory Replay with Data Compression for Continual Learning [80.95444077825852]
We propose memory replay with data compression to reduce the storage cost of old training samples.
We extensively validate this across several benchmarks of class-incremental learning and in a realistic scenario of object detection for autonomous driving.
arXiv Detail & Related papers (2022-02-14T10:26:23Z) - Towards Compact CNNs via Collaborative Compression [166.86915086497433]
We propose a Collaborative Compression scheme, which joints channel pruning and tensor decomposition to compress CNN models.
We achieve 52.9% FLOPs reduction by removing 48.4% parameters on ResNet-50 with only a Top-1 accuracy drop of 0.56% on ImageNet 2012.
arXiv Detail & Related papers (2021-05-24T12:07:38Z) - Single-path Bit Sharing for Automatic Loss-aware Model Compression [126.98903867768732]
Single-path Bit Sharing (SBS) is able to significantly reduce computational cost while achieving promising performance.
Our SBS compressed MobileNetV2 achieves 22.6x Bit-Operation (BOP) reduction with only 0.1% drop in the Top-1 accuracy.
arXiv Detail & Related papers (2021-01-13T08:28:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.