論文の概要: BoundarySeg:An Embarrassingly Simple Method To Boost Medical Image Segmentation Performance for Low Data Regimes
- arxiv url: http://arxiv.org/abs/2505.09829v1
- Date: Wed, 14 May 2025 22:15:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-16 22:29:06.124227
- Title: BoundarySeg:An Embarrassingly Simple Method To Boost Medical Image Segmentation Performance for Low Data Regimes
- Title(参考訳): BoundarySeg:低データレジームのための医療画像セグメンテーション性能を高めるためのとても単純な方法
- Authors: Tushar Kataria, Shireen Y. Elhabian,
- Abstract要約: 本稿では,既存のアノテーションのみを活用するシンプルな,効率的かつ効率的な医用画像分割手法を提案する。
臓器境界予測を全臓器セグメンテーションの補助タスクとして組み込んだマルチタスクフレームワークであるBoundarySegを提案する。
- 参考スコア(独自算出の注目度): 2.1387689734506043
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Obtaining large-scale medical data, annotated or unannotated, is challenging due to stringent privacy regulations and data protection policies. In addition, annotating medical images requires that domain experts manually delineate anatomical structures, making the process both time-consuming and costly. As a result, semi-supervised methods have gained popularity for reducing annotation costs. However, the performance of semi-supervised methods is heavily dependent on the availability of unannotated data, and their effectiveness declines when such data are scarce or absent. To overcome this limitation, we propose a simple, yet effective and computationally efficient approach for medical image segmentation that leverages only existing annotations. We propose BoundarySeg , a multi-task framework that incorporates organ boundary prediction as an auxiliary task to full organ segmentation, leveraging consistency between the two task predictions to provide additional supervision. This strategy improves segmentation accuracy, especially in low data regimes, allowing our method to achieve performance comparable to or exceeding state-of-the-art semi supervised approaches all without relying on unannotated data or increasing computational demands. Code will be released upon acceptance.
- Abstract(参考訳): 厳格なプライバシー規制とデータ保護ポリシーのために、注釈付きまたは注釈なしの大規模な医療データを取得することは難しい。
さらに、医用画像の注釈付けには、ドメインの専門家が手動で解剖学的構造を記述する必要がある。
その結果,半教師付き手法がアノテーションのコスト削減に人気を博した。
しかし、半教師付き手法の性能は、注釈のないデータの可用性に大きく依存しており、そのようなデータが不足している場合や欠落する場合、その有効性が低下する。
この制限を克服するために,既存のアノテーションのみを活用する,シンプルで効率的かつ効率的な医用画像セグメンテーション手法を提案する。
本稿では,臓器境界予測を全臓器セグメント化の補助タスクとして組み込んだマルチタスクフレームワークであるBoundarySegを提案する。
この戦略は,特に低データ状態においてセグメント化精度を向上し,非注釈データや計算要求の増大を伴わずに,最先端の半教師付き手法に匹敵する性能を達成する。
コードは受理時にリリースされる。
関連論文リスト
- Enhancing SAM with Efficient Prompting and Preference Optimization for Semi-supervised Medical Image Segmentation [30.524999223901645]
完全教師なし方式で生成されるアノテーション効率のよいプロンプトを利用するSAM(Segment Anything Model)フレームワークを提案する。
我々は、モデルが高忠実度セグメンテーションを生成できるように最適なポリシーを設計するために、直接選好最適化手法を採用する。
X線, 超音波, 腹部CTなど多彩な領域にわたる肺分節, 乳房腫瘍分節, 臓器分節などのタスクにおける我々のフレームワークの最先端性能は, 低アノテーションデータシナリオにおけるその有効性を正当化するものである。
論文 参考訳(メタデータ) (2025-03-06T17:28:48Z) - Mind the Context: Attention-Guided Weak-to-Strong Consistency for Enhanced Semi-Supervised Medical Image Segmentation [14.67636369741001]
本稿では,AIGCMatch (Attention-Guided weak-to-strong Consistency Match) という半教師付き学習フレームワークを提案する。
AIGCMatchフレームワークは、イメージレベルと特徴レベルの両方において注意誘導の摂動戦略を取り入れ、弱い一貫性の規則化を実現する。
本手法は, ACDCデータセットの7ケースシナリオにおいて90.4%のDiceスコアを達成し, 最先端の手法を超越し, 臨床環境におけるその可能性と有効性を示した。
論文 参考訳(メタデータ) (2024-10-16T10:04:22Z) - Embarrassingly Simple Scribble Supervision for 3D Medical Segmentation [0.8391490466934672]
この課題の解決策として、スクリブル教師付き学習が登場し、大規模なデータセットを作成する際のアノテーションの労力の削減を約束する。
そこで本研究では,解剖学と病理学の多様さを網羅した7つのデータセットからなるベンチマークを提案する。
nnU-Netを用いた評価の結果,既存の手法の多くは一般化の欠如に悩まされているが,提案手法は一貫して最先端の性能を提供する。
論文 参考訳(メタデータ) (2024-03-19T15:41:16Z) - Adaptive Semi-Supervised Segmentation of Brain Vessels with Ambiguous
Labels [63.415444378608214]
提案手法は, 進歩的半教師付き学習, 適応的学習戦略, 境界拡張など, 革新的な手法を取り入れたものである。
3DRAデータセットによる実験結果から,メッシュベースのセグメンテーション指標を用いて,本手法の優位性を示す。
論文 参考訳(メタデータ) (2023-08-07T14:16:52Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Uncertainty-Guided Mutual Consistency Learning for Semi-Supervised
Medical Image Segmentation [9.745971699005857]
医用画像セグメンテーションのための新しい不確実性誘導相互整合学習フレームワークを提案する。
タスクレベルの正規化によるタスク内一貫性学習と、タスク間の整合性学習を統合して、幾何学的な形状情報を活用する。
本手法は,ラベルのないデータを活用し,既存の半教師付きセグメンテーション法より優れた性能を実現する。
論文 参考訳(メタデータ) (2021-12-05T08:19:41Z) - WSSOD: A New Pipeline for Weakly- and Semi-Supervised Object Detection [75.80075054706079]
弱機能および半教師付きオブジェクト検出フレームワーク(WSSOD)を提案する。
エージェント検出器は、まず関節データセット上でトレーニングされ、弱注釈画像上で擬似境界ボックスを予測するために使用される。
提案フレームワークはPASCAL-VOC と MSCOCO のベンチマークで顕著な性能を示し,完全教師付き環境で得られたものと同等の性能を達成している。
論文 参考訳(メタデータ) (2021-05-21T11:58:50Z) - Every Annotation Counts: Multi-label Deep Supervision for Medical Image
Segmentation [85.0078917060652]
この障壁を克服する半弱教師付きセグメンテーションアルゴリズムを提案する。
このアプローチは,深層指導と生徒・教師モデルの新しい定式化に基づいている。
我々の新しいセグメンテーションのトレーニング体制は、完全にラベル付けされ、バウンディングボックスでマークされた画像、単にグローバルラベル、あるいは全くないイメージを柔軟に活用することで、高価なラベルの要件を94.22%削減することができる。
論文 参考訳(メタデータ) (2021-04-27T14:51:19Z) - A Simple Baseline for Semi-supervised Semantic Segmentation with Strong
Data Augmentation [74.8791451327354]
セマンティックセグメンテーションのためのシンプルで効果的な半教師付き学習フレームワークを提案する。
単純な設計とトレーニングのテクニックのセットは、半教師付きセマンティックセグメンテーションの性能を大幅に向上させることができる。
本手法は,Cityscapes と Pascal VOC データセットの半教師付き設定において,最先端の処理結果を実現する。
論文 参考訳(メタデータ) (2021-04-15T06:01:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。