BoundarySeg:An Embarrassingly Simple Method To Boost Medical Image Segmentation Performance for Low Data Regimes
- URL: http://arxiv.org/abs/2505.09829v1
- Date: Wed, 14 May 2025 22:15:41 GMT
- Title: BoundarySeg:An Embarrassingly Simple Method To Boost Medical Image Segmentation Performance for Low Data Regimes
- Authors: Tushar Kataria, Shireen Y. Elhabian,
- Abstract summary: We propose a simple, yet effective and computationally efficient approach for medical image segmentation that leverages only existing annotations.<n>We propose BoundarySeg, a multi-task framework that incorporates organ boundary prediction as an auxiliary task to full organ segmentation.
- Score: 2.1387689734506043
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Obtaining large-scale medical data, annotated or unannotated, is challenging due to stringent privacy regulations and data protection policies. In addition, annotating medical images requires that domain experts manually delineate anatomical structures, making the process both time-consuming and costly. As a result, semi-supervised methods have gained popularity for reducing annotation costs. However, the performance of semi-supervised methods is heavily dependent on the availability of unannotated data, and their effectiveness declines when such data are scarce or absent. To overcome this limitation, we propose a simple, yet effective and computationally efficient approach for medical image segmentation that leverages only existing annotations. We propose BoundarySeg , a multi-task framework that incorporates organ boundary prediction as an auxiliary task to full organ segmentation, leveraging consistency between the two task predictions to provide additional supervision. This strategy improves segmentation accuracy, especially in low data regimes, allowing our method to achieve performance comparable to or exceeding state-of-the-art semi supervised approaches all without relying on unannotated data or increasing computational demands. Code will be released upon acceptance.
Related papers
- RefineSeg: Dual Coarse-to-Fine Learning for Medical Image Segmentation [2.608565452856053]
High-quality pixel-level annotations of medical images are essential for supervised segmentation tasks.<n>We propose a novel coarse-to-fine segmentation framework that relies entirely on coarse-level annotations.
arXiv Detail & Related papers (2025-08-04T19:14:30Z) - Promptable cancer segmentation using minimal expert-curated data [5.097733221827974]
Automated segmentation of cancer on medical images can aid targeted diagnostic and therapeutic procedures.<n>Its adoption is limited by the high cost of expert annotations required for training and inter-observer variability in datasets.<n>We propose a novel approach for promptable segmentation requiring only 24 fully-segmented images, supplemented by 8 weakly-labelled images.
arXiv Detail & Related papers (2025-05-23T13:56:40Z) - Enhancing SAM with Efficient Prompting and Preference Optimization for Semi-supervised Medical Image Segmentation [30.524999223901645]
We propose an enhanced Segment Anything Model (SAM) framework that utilizes annotation-efficient prompts generated in a fully unsupervised fashion.<n>We adopt the direct preference optimization technique to design an optimal policy that enables the model to generate high-fidelity segmentations.<n>State-of-the-art performance of our framework in tasks such as lung segmentation, breast tumor segmentation, and organ segmentation across various modalities, including X-ray, ultrasound, and abdominal CT, justifies its effectiveness in low-annotation data scenarios.
arXiv Detail & Related papers (2025-03-06T17:28:48Z) - Mind the Context: Attention-Guided Weak-to-Strong Consistency for Enhanced Semi-Supervised Medical Image Segmentation [14.67636369741001]
This paper introduces a semi-supervised learning framework named Attention-Guided weak-to-strong Consistency Match (AIGCMatch)
The AIGCMatch framework incorporates attention-guided perturbation strategies at both the image and feature levels to achieve weak-to-strong consistency regularization.
Our method achieved a 90.4% Dice score in the 7-case scenario on the ACDC dataset, surpassing the state-of-the-art methods and demonstrating its potential and efficacy in clinical settings.
arXiv Detail & Related papers (2024-10-16T10:04:22Z) - Embarrassingly Simple Scribble Supervision for 3D Medical Segmentation [0.8391490466934672]
Scribble-supervised learning emerges as a possible solution to this challenge, promising a reduction in annotation efforts when creating large-scale datasets.
We propose a benchmark consisting of seven datasets covering a diverse set of anatomies and pathologies imaged with varying modalities.
Our evaluation using nnU-Net reveals that while most existing methods suffer from a lack of generalization, the proposed approach consistently delivers state-of-the-art performance.
arXiv Detail & Related papers (2024-03-19T15:41:16Z) - PREM: A Simple Yet Effective Approach for Node-Level Graph Anomaly
Detection [65.24854366973794]
Node-level graph anomaly detection (GAD) plays a critical role in identifying anomalous nodes from graph-structured data in domains such as medicine, social networks, and e-commerce.
We introduce a simple method termed PREprocessing and Matching (PREM for short) to improve the efficiency of GAD.
Our approach streamlines GAD, reducing time and memory consumption while maintaining powerful anomaly detection capabilities.
arXiv Detail & Related papers (2023-10-18T02:59:57Z) - Adaptive Semi-Supervised Segmentation of Brain Vessels with Ambiguous
Labels [63.415444378608214]
Our approach incorporates innovative techniques including progressive semi-supervised learning, adaptative training strategy, and boundary enhancement.
Experimental results on 3DRA datasets demonstrate the superiority of our method in terms of mesh-based segmentation metrics.
arXiv Detail & Related papers (2023-08-07T14:16:52Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Uncertainty-Guided Mutual Consistency Learning for Semi-Supervised
Medical Image Segmentation [9.745971699005857]
We propose a novel uncertainty-guided mutual consistency learning framework for medical image segmentation.
It integrates intra-task consistency learning from up-to-date predictions for self-ensembling and cross-task consistency learning from task-level regularization to exploit geometric shape information.
Our method achieves performance gains by leveraging unlabeled data and outperforms existing semi-supervised segmentation methods.
arXiv Detail & Related papers (2021-12-05T08:19:41Z) - WSSOD: A New Pipeline for Weakly- and Semi-Supervised Object Detection [75.80075054706079]
We propose a weakly- and semi-supervised object detection framework (WSSOD)
An agent detector is first trained on a joint dataset and then used to predict pseudo bounding boxes on weakly-annotated images.
The proposed framework demonstrates remarkable performance on PASCAL-VOC and MSCOCO benchmark, achieving a high performance comparable to those obtained in fully-supervised settings.
arXiv Detail & Related papers (2021-05-21T11:58:50Z) - Every Annotation Counts: Multi-label Deep Supervision for Medical Image
Segmentation [85.0078917060652]
We propose a semi-weakly supervised segmentation algorithm to overcome this barrier.
Our approach is based on a new formulation of deep supervision and student-teacher model.
With our novel training regime for segmentation that flexibly makes use of images that are either fully labeled, marked with bounding boxes, just global labels, or not at all, we are able to cut the requirement for expensive labels by 94.22%.
arXiv Detail & Related papers (2021-04-27T14:51:19Z) - A Simple Baseline for Semi-supervised Semantic Segmentation with Strong
Data Augmentation [74.8791451327354]
We propose a simple yet effective semi-supervised learning framework for semantic segmentation.
A set of simple design and training techniques can collectively improve the performance of semi-supervised semantic segmentation significantly.
Our method achieves state-of-the-art results in the semi-supervised settings on the Cityscapes and Pascal VOC datasets.
arXiv Detail & Related papers (2021-04-15T06:01:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.