Learning Rock Pushability on Rough Planetary Terrain
- URL: http://arxiv.org/abs/2505.09833v2
- Date: Thu, 05 Jun 2025 15:00:47 GMT
- Title: Learning Rock Pushability on Rough Planetary Terrain
- Authors: Tuba Girgin, Emre Girgin, Cagri Kilic,
- Abstract summary: We propose an alternative approach to mobile navigation in unstructured environments by leveraging the manipulation capabilities of a robotic manipulator mounted on top of a mobile robot.<n>Our proposed framework integrates exteroceptive and proprioceptive feedback to assess the push affordance of obstacles, facilitating their repositioning rather than avoidance.<n>The objective of our navigation approach is to enhance the efficiency of routes utilized by multiple agents over extended periods by reducing the overall time spent by a fleet in environments where autonomous infrastructure development is imperative, such as lunar or Martian surfaces.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the context of mobile navigation in unstructured environments, the predominant approach entails the avoidance of obstacles. The prevailing path planning algorithms are contingent upon deviating from the intended path for an indefinite duration and returning to the closest point on the route after the obstacle is left behind spatially. However, avoiding an obstacle on a path that will be used repeatedly by multiple agents can hinder long-term efficiency and lead to a lasting reliance on an active path planning system. In this study, we propose an alternative approach to mobile navigation in unstructured environments by leveraging the manipulation capabilities of a robotic manipulator mounted on top of a mobile robot. Our proposed framework integrates exteroceptive and proprioceptive feedback to assess the push affordance of obstacles, facilitating their repositioning rather than avoidance. While our preliminary visual estimation takes into account the characteristics of both the obstacle and the surface it relies on, the push affordance estimation module exploits the force feedback obtained by interacting with the obstacle via a robotic manipulator as the guidance signal. The objective of our navigation approach is to enhance the efficiency of routes utilized by multiple agents over extended periods by reducing the overall time spent by a fleet in environments where autonomous infrastructure development is imperative, such as lunar or Martian surfaces.
Related papers
- Deep Reinforcement Learning-based Obstacle Avoidance for Robot Movement in Warehouse Environments [6.061908707850057]
This paper proposes a deep reinforcement learning based on the warehouse environment, the mobile robot obstacle avoidance algorithm.
For the insufficient learning ability of the value function network in the deep reinforcement learning algorithm, the interaction information between pedestrians is extracted through the pedestrian angle grid.
The reward function of reinforcement learning is designed based on the spatial behaviour of pedestrians, and the robot is punished for the state where the angle changes too much.
arXiv Detail & Related papers (2024-09-23T12:42:35Z) - TOP-Nav: Legged Navigation Integrating Terrain, Obstacle and Proprioception Estimation [5.484041860401147]
TOP-Nav is a novel legged navigation framework that integrates a comprehensive path planner with Terrain awareness, Obstacle avoidance and close-loop Proprioception.
We show that TOP-Nav achieves open-world navigation that the robot can handle terrains or disturbances beyond the distribution of prior knowledge.
arXiv Detail & Related papers (2024-04-23T17:42:45Z) - Towards Deviation-Robust Agent Navigation via Perturbation-Aware
Contrastive Learning [125.61772424068903]
Vision-and-language navigation (VLN) asks an agent to follow a given language instruction to navigate through a real 3D environment.
We present a model-agnostic training paradigm, called Progressive Perturbation-aware Contrastive Learning (PROPER) to enhance the generalization ability of existing VLN agents.
arXiv Detail & Related papers (2024-03-09T02:34:13Z) - ETPNav: Evolving Topological Planning for Vision-Language Navigation in
Continuous Environments [56.194988818341976]
Vision-language navigation is a task that requires an agent to follow instructions to navigate in environments.
We propose ETPNav, which focuses on two critical skills: 1) the capability to abstract environments and generate long-range navigation plans, and 2) the ability of obstacle-avoiding control in continuous environments.
ETPNav yields more than 10% and 20% improvements over prior state-of-the-art on R2R-CE and RxR-CE datasets.
arXiv Detail & Related papers (2023-04-06T13:07:17Z) - VAE-Loco: Versatile Quadruped Locomotion by Learning a Disentangled Gait
Representation [78.92147339883137]
We show that it is pivotal in increasing controller robustness by learning a latent space capturing the key stance phases constituting a particular gait.
We demonstrate that specific properties of the drive signal map directly to gait parameters such as cadence, footstep height and full stance duration.
The use of a generative model facilitates the detection and mitigation of disturbances to provide a versatile and robust planning framework.
arXiv Detail & Related papers (2022-05-02T19:49:53Z) - Next Steps: Learning a Disentangled Gait Representation for Versatile
Quadruped Locomotion [69.87112582900363]
Current planners are unable to vary key gait parameters continuously while the robot is in motion.
In this work we address this limitation by learning a latent space capturing the key stance phases constituting a particular gait.
We demonstrate that specific properties of the drive signal map directly to gait parameters such as cadence, foot step height and full stance duration.
arXiv Detail & Related papers (2021-12-09T10:02:02Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Vision-Based Mobile Robotics Obstacle Avoidance With Deep Reinforcement
Learning [49.04274612323564]
Obstacle avoidance is a fundamental and challenging problem for autonomous navigation of mobile robots.
In this paper, we consider the problem of obstacle avoidance in simple 3D environments where the robot has to solely rely on a single monocular camera.
We tackle the obstacle avoidance problem as a data-driven end-to-end deep learning approach.
arXiv Detail & Related papers (2021-03-08T13:05:46Z) - Autonomous Off-road Navigation over Extreme Terrains with
Perceptually-challenging Conditions [7.514178230130502]
We propose a framework for resilient autonomous computation in perceptually challenging environments with mobility-stressing elements.
We propose a fast settling algorithm to generate robust multi-fidelity traversability estimates in real-time.
The proposed approach was deployed on multiple physical systems including skid-steer and tracked robots, a high-speed RC car and legged robots.
arXiv Detail & Related papers (2021-01-26T22:13:01Z) - Domain Adaptation for Outdoor Robot Traversability Estimation from RGB
data with Safety-Preserving Loss [12.697106921197701]
We present an approach based on deep learning to estimate and anticipate the traversing score of different routes in the field of view of an on-board RGB camera.
We then enhance the model's capabilities by addressing domain shifts through gradient-reversal unsupervised adaptation.
Experimental results show that our approach is able to satisfactorily identify traversable areas and to generalize to unseen locations.
arXiv Detail & Related papers (2020-09-16T09:19:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.