TOP-Nav: Legged Navigation Integrating Terrain, Obstacle and Proprioception Estimation
- URL: http://arxiv.org/abs/2404.15256v4
- Date: Fri, 27 Sep 2024 07:16:23 GMT
- Title: TOP-Nav: Legged Navigation Integrating Terrain, Obstacle and Proprioception Estimation
- Authors: Junli Ren, Yikai Liu, Yingru Dai, Junfeng Long, Guijin Wang,
- Abstract summary: TOP-Nav is a novel legged navigation framework that integrates a comprehensive path planner with Terrain awareness, Obstacle avoidance and close-loop Proprioception.
We show that TOP-Nav achieves open-world navigation that the robot can handle terrains or disturbances beyond the distribution of prior knowledge.
- Score: 5.484041860401147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Legged navigation is typically examined within open-world, off-road, and challenging environments. In these scenarios, estimating external disturbances requires a complex synthesis of multi-modal information. This underlines a major limitation in existing works that primarily focus on avoiding obstacles. In this work, we propose TOP-Nav, a novel legged navigation framework that integrates a comprehensive path planner with Terrain awareness, Obstacle avoidance and close-loop Proprioception. TOP-Nav underscores the synergies between vision and proprioception in both path and motion planning. Within the path planner, we present and integrate a terrain estimator that enables the robot to select waypoints on terrains with higher traversability while effectively avoiding obstacles. In the motion planning level, we not only implement a locomotion controller to track the navigation commands, but also construct a proprioception advisor to provide motion evaluations for the path planner. Based on the close-loop motion feedback, we make online corrections for the vision-based terrain and obstacle estimations. Consequently, TOP-Nav achieves open-world navigation that the robot can handle terrains or disturbances beyond the distribution of prior knowledge and overcomes constraints imposed by visual conditions. Building upon extensive experiments conducted in both simulation and real-world environments, TOP-Nav demonstrates superior performance in open-world navigation compared to existing methods.
Related papers
- IN-Sight: Interactive Navigation through Sight [20.184155117341497]
IN-Sight is a novel approach to self-supervised path planning.
It calculates traversability scores and incorporates them into a semantic map.
To precisely navigate around obstacles, IN-Sight employs a local planner.
arXiv Detail & Related papers (2024-08-01T07:27:54Z) - Learning Robust Autonomous Navigation and Locomotion for Wheeled-Legged Robots [50.02055068660255]
Navigating urban environments poses unique challenges for robots, necessitating innovative solutions for locomotion and navigation.
This work introduces a fully integrated system comprising adaptive locomotion control, mobility-aware local navigation planning, and large-scale path planning within the city.
Using model-free reinforcement learning (RL) techniques and privileged learning, we develop a versatile locomotion controller.
Our controllers are integrated into a large-scale urban navigation system and validated by autonomous, kilometer-scale navigation missions conducted in Zurich, Switzerland, and Seville, Spain.
arXiv Detail & Related papers (2024-05-03T00:29:20Z) - Angle Robustness Unmanned Aerial Vehicle Navigation in GNSS-Denied
Scenarios [66.05091704671503]
We present a novel angle navigation paradigm to deal with flight deviation in point-to-point navigation tasks.
We also propose a model that includes the Adaptive Feature Enhance Module, Cross-knowledge Attention-guided Module and Robust Task-oriented Head Module.
arXiv Detail & Related papers (2024-02-04T08:41:20Z) - Floor extraction and door detection for visually impaired guidance [78.94595951597344]
Finding obstacle-free paths in unknown environments is a big navigation issue for visually impaired people and autonomous robots.
New devices based on computer vision systems can help impaired people to overcome the difficulties of navigating in unknown environments in safe conditions.
In this work it is proposed a combination of sensors and algorithms that can lead to the building of a navigation system for visually impaired people.
arXiv Detail & Related papers (2024-01-30T14:38:43Z) - ETPNav: Evolving Topological Planning for Vision-Language Navigation in
Continuous Environments [56.194988818341976]
Vision-language navigation is a task that requires an agent to follow instructions to navigate in environments.
We propose ETPNav, which focuses on two critical skills: 1) the capability to abstract environments and generate long-range navigation plans, and 2) the ability of obstacle-avoiding control in continuous environments.
ETPNav yields more than 10% and 20% improvements over prior state-of-the-art on R2R-CE and RxR-CE datasets.
arXiv Detail & Related papers (2023-04-06T13:07:17Z) - Holistic Deep-Reinforcement-Learning-based Training of Autonomous
Navigation Systems [4.409836695738518]
Deep Reinforcement Learning emerged as a promising approach for autonomous navigation of ground vehicles.
In this paper, we propose a holistic Deep Reinforcement Learning training approach involving all entities of the navigation stack.
arXiv Detail & Related papers (2023-02-06T16:52:15Z) - Detect and Approach: Close-Range Navigation Support for People with
Blindness and Low Vision [13.478275180547925]
People with blindness and low vision (pBLV) experience significant challenges when locating final destinations or targeting specific objects in unfamiliar environments.
We develop a novel wearable navigation solution to provide real-time guidance for a user to approach a target object of interest efficiently and effectively in unfamiliar environments.
arXiv Detail & Related papers (2022-08-17T18:38:20Z) - Coupling Vision and Proprioception for Navigation of Legged Robots [65.59559699815512]
We exploit the complementary strengths of vision and proprioception to achieve point goal navigation in a legged robot.
We show superior performance compared to wheeled robot (LoCoBot) baselines.
We also show the real-world deployment of our system on a quadruped robot with onboard sensors and compute.
arXiv Detail & Related papers (2021-12-03T18:59:59Z) - Augmented reality navigation system for visual prosthesis [67.09251544230744]
We propose an augmented reality navigation system for visual prosthesis that incorporates a software of reactive navigation and path planning.
It consists on four steps: locating the subject on a map, planning the subject trajectory, showing it to the subject and re-planning without obstacles.
Results show how our augmented navigation system help navigation performance by reducing the time and distance to reach the goals, even significantly reducing the number of obstacles collisions.
arXiv Detail & Related papers (2021-09-30T09:41:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.