Instance-Prototype Affinity Learning for Non-Exemplar Continual Graph Learning
- URL: http://arxiv.org/abs/2505.10040v1
- Date: Thu, 15 May 2025 07:35:27 GMT
- Title: Instance-Prototype Affinity Learning for Non-Exemplar Continual Graph Learning
- Authors: Lei Song, Jiaxing Li, Shihan Guan, Youyong Kong,
- Abstract summary: Graph Neural Networks endure catastrophic forgetting, undermining their capacity to preserve previously acquired knowledge.<n>We propose Instance-Prototype Affinity Learning (IPAL), a novel paradigm for Non-Exemplar Continual Graph Learning (NECGL)<n>We embed a Decision Boundary Perception mechanism within PCL, fostering greater inter-class discriminability.
- Score: 7.821213342456415
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNN) endure catastrophic forgetting, undermining their capacity to preserve previously acquired knowledge amid the assimilation of novel information. Rehearsal-based techniques revisit historical examples, adopted as a principal strategy to alleviate this phenomenon. However, memory explosion and privacy infringements impose significant constraints on their utility. Non-Exemplar methods circumvent the prior issues through Prototype Replay (PR), yet feature drift presents new challenges. In this paper, our empirical findings reveal that Prototype Contrastive Learning (PCL) exhibits less pronounced drift than conventional PR. Drawing upon PCL, we propose Instance-Prototype Affinity Learning (IPAL), a novel paradigm for Non-Exemplar Continual Graph Learning (NECGL). Exploiting graph structural information, we formulate Topology-Integrated Gaussian Prototypes (TIGP), guiding feature distributions towards high-impact nodes to augment the model's capacity for assimilating new knowledge. Instance-Prototype Affinity Distillation (IPAD) safeguards task memory by regularizing discontinuities in class relationships. Moreover, we embed a Decision Boundary Perception (DBP) mechanism within PCL, fostering greater inter-class discriminability. Evaluations on four node classification benchmark datasets demonstrate that our method outperforms existing state-of-the-art methods, achieving a better trade-off between plasticity and stability.
Related papers
- Orthogonal Projection Subspace to Aggregate Online Prior-knowledge for Continual Test-time Adaptation [67.80294336559574]
Continual Test Time Adaptation (CTTA) is a task that requires a source pre-trained model to continually adapt to new scenarios.<n>We propose a novel pipeline, Orthogonal Projection Subspace to aggregate online Prior-knowledge, dubbed OoPk.
arXiv Detail & Related papers (2025-06-23T18:17:39Z) - EKPC: Elastic Knowledge Preservation and Compensation for Class-Incremental Learning [53.88000987041739]
Class-Incremental Learning (CIL) aims to enable AI models to continuously learn from sequentially arriving data of different classes over time.<n>We propose the Elastic Knowledge Preservation and Compensation (EKPC) method, integrating Importance-aware importance Regularization (IPR) and Trainable Semantic Drift Compensation (TSDC) for CIL.
arXiv Detail & Related papers (2025-06-14T05:19:58Z) - Knowledge Graph Enhanced Generative Multi-modal Models for Class-Incremental Learning [51.0864247376786]
We introduce a Knowledge Graph Enhanced Generative Multi-modal model (KG-GMM) that builds an evolving knowledge graph throughout the learning process.<n>During testing, we propose a Knowledge Graph Augmented Inference method that locates specific categories by analyzing relationships within the generated text.
arXiv Detail & Related papers (2025-03-24T07:20:43Z) - Towards Robust Incremental Learning under Ambiguous Supervision [22.9111210739047]
We propose a novel weakly-supervised learning paradigm called Incremental Partial Label Learning (IPLL)<n>IPLL aims to handle sequential fully-supervised learning problems where novel classes emerge from time to time.<n>We develop a memory replay technique that collects well-disambiguated samples while maintaining representativeness and diversity.
arXiv Detail & Related papers (2025-01-23T11:52:53Z) - Idempotent Unsupervised Representation Learning for Skeleton-Based Action Recognition [13.593511876719367]
We propose a novel skeleton-based idempotent generative model (IGM) for unsupervised representation learning.
Our experiments on benchmark datasets, NTU RGB+D and PKUMMD, demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2024-10-27T06:29:04Z) - Large-scale Pre-trained Models are Surprisingly Strong in Incremental Novel Class Discovery [76.63807209414789]
We challenge the status quo in class-iNCD and propose a learning paradigm where class discovery occurs continuously and truly unsupervisedly.
We propose simple baselines, composed of a frozen PTM backbone and a learnable linear classifier, that are not only simple to implement but also resilient under longer learning scenarios.
arXiv Detail & Related papers (2023-03-28T13:47:16Z) - Mitigating Forgetting in Online Continual Learning via Contrasting
Semantically Distinct Augmentations [22.289830907729705]
Online continual learning (OCL) aims to enable model learning from a non-stationary data stream to continuously acquire new knowledge as well as retain the learnt one.
Main challenge comes from the "catastrophic forgetting" issue -- the inability to well remember the learnt knowledge while learning the new ones.
arXiv Detail & Related papers (2022-11-10T05:29:43Z) - Hierarchical Prototype Networks for Continual Graph Representation
Learning [90.78466005753505]
We present Hierarchical Prototype Networks (HPNs) which extract different levels of abstract knowledge in the form of prototypes to represent the continuously expanded graphs.
We show that HPNs not only outperform state-of-the-art baseline techniques but also consume relatively less memory.
arXiv Detail & Related papers (2021-11-30T14:15:14Z) - Ask-n-Learn: Active Learning via Reliable Gradient Representations for
Image Classification [29.43017692274488]
Deep predictive models rely on human supervision in the form of labeled training data.
We propose Ask-n-Learn, an active learning approach based on gradient embeddings obtained using the pesudo-labels estimated in each of the algorithm.
arXiv Detail & Related papers (2020-09-30T05:19:56Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
Prototypical Contrastive Learning (PCL) is an unsupervised representation learning method.
PCL implicitly encodes semantic structures of the data into the learned embedding space.
PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks.
arXiv Detail & Related papers (2020-05-11T09:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.