論文の概要: IMITATE: Image Registration with Context for unknown time frame recovery
- arxiv url: http://arxiv.org/abs/2505.10124v1
- Date: Thu, 15 May 2025 09:51:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-16 22:29:06.26822
- Title: IMITATE: Image Registration with Context for unknown time frame recovery
- Title(参考訳): ImitATE:未知の時間フレーム回復のためのコンテキストによる画像登録
- Authors: Ziad Kheil, Lucas Robinet, Laurent Risser, Soleakhena Ken,
- Abstract要約: 我々は、新しい条件付きU-Netアーキテクチャを用いて、このフォーマリズムをモデル化する方法を示す。
4D-CTスキャンを用いて, 異なる呼吸振幅で放射線治療を行うため, 画像移動腫瘍に適用した。
- 参考スコア(独自算出の注目度): 0.6849746341453253
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we formulate a novel image registration formalism dedicated to the estimation of unknown condition-related images, based on two or more known images and their associated conditions. We show how to practically model this formalism by using a new conditional U-Net architecture, which fully takes into account the conditional information and does not need any fixed image. Our formalism is then applied to image moving tumors for radiotherapy treatment at different breathing amplitude using 4D-CT (3D+t) scans in thoracoabdominal regions. This driving application is particularly complex as it requires to stitch a collection of sequential 2D slices into several 3D volumes at different organ positions. Movement interpolation with standard methods then generates well known reconstruction artefacts in the assembled volumes due to irregular patient breathing, hysteresis and poor correlation of breathing signal to internal motion. Results obtained on 4D-CT clinical data showcase artefact-free volumes achieved through real-time latencies. The code is publicly available at https://github.com/Kheil-Z/IMITATE .
- Abstract(参考訳): 本稿では,2つ以上の既知の画像とその関連条件に基づいて,未知の条件関連画像の推定専用の新しい画像登録形式を定式化する。
我々は、条件情報を完全に考慮し、固定画像を必要としない新しい条件付きU-Netアーキテクチャを用いて、この形式を現実的にモデル化する方法を示す。
胸腹部領域の4D-CT(3D+t)スキャンを用いて, 異なる呼吸振幅で放射線治療を行うため, 画像移動腫瘍に適用した。
この駆動アプリケーションは、連続した2Dスライスを異なる臓器位置で複数の3Dボリュームに縫合する必要があるため、特に複雑である。
標準的な方法での運動補間は、不規則な患者の呼吸、ヒステリシス、呼吸信号と内的運動との相関が低かったため、組み立てられたボリュームでよく知られた再建アーチファクトを生成する。
4D-CT臨床データから得られた結果から, リアルタイムレイテンシーによる成果は得られなかった。
コードはhttps://github.com/Kheil-Z/IMITATEで公開されている。
関連論文リスト
- MedTet: An Online Motion Model for 4D Heart Reconstruction [59.74234226055964]
本研究は, 術後の軽度データから3次元心臓運動を再構築するための新しいアプローチを提案する。
既存の方法では、フル3次元の体積像から3次元の臓器のジオメトリーを正確に再構築することができる。
このような部分的データから3次元運動を再構築するための汎用的なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-03T17:18:33Z) - cWDM: Conditional Wavelet Diffusion Models for Cross-Modality 3D Medical Image Synthesis [1.767791678320834]
本稿では「BraTS 2024脳MR画像合成チャレンジ」に貢献する。
高分解能ボリュームの対画像変換タスクを解くための条件付きウェーブレット拡散モデルを提案する。
論文 参考訳(メタデータ) (2024-11-26T08:17:57Z) - Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
クロスモーダル逆ニューラルレンダリングによる神経外科手術における術中3D/2Dレジストレーションのための新しいアプローチを提案する。
本手法では,暗黙の神経表現を2つの構成要素に分離し,術前および術中における解剖学的構造について検討した。
臨床症例の振り返りデータを用いて本法の有効性を検証し,現在の登録基準を満たした状態での最先端の検査成績を示した。
論文 参考訳(メタデータ) (2024-09-18T13:40:59Z) - On the Localization of Ultrasound Image Slices within Point Distribution
Models [84.27083443424408]
甲状腺疾患は高分解能超音波(US)で診断されることが多い
縦断追跡は病理甲状腺形態の変化をモニタリングするための重要な診断プロトコルである。
3次元形状表現におけるUS画像の自動スライスローカライズのためのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-01T10:10:46Z) - Multi-View Vertebra Localization and Identification from CT Images [57.56509107412658]
我々は,CT画像からの多視点椎体局在と同定を提案する。
本研究では,3次元問題を異なる視点における2次元局所化および識別タスクに変換する。
本手法は,多視点グローバル情報を自然に学習することができる。
論文 参考訳(メタデータ) (2023-07-24T14:43:07Z) - CNN-based real-time 2D-3D deformable registration from a single X-ray
projection [2.1198879079315573]
本稿では, フルオロスコープ画像を用いたリアルタイム2D-3D非剛体登録法を提案する。
術前スキャンから解剖学の変位場と2次元投影からなるデータセットを生成する。
ニューラルネットワークは、未知の3D変位場を単一の投影画像から回復するように訓練される。
論文 参考訳(メタデータ) (2022-12-15T09:57:19Z) - Fluid registration between lung CT and stationary chest tomosynthesis
images [23.239722016943794]
計測された投影とデジタル再構成されたラジオグラフに基づいて3次元変形を推定する3D/2D登録手法を定式化する。
我々は,CTと静止胸部トモシンセシス(sDCT)画像の登録に対するアプローチを実証し,それが反復的画像再構成アプローチにどのように自然に導かれるかを示した。
論文 参考訳(メタデータ) (2022-03-06T21:51:49Z) - Explainable multiple abnormality classification of chest CT volumes with
AxialNet and HiResCAM [89.2175350956813]
本稿では,容積医用画像における多変量分類の課題について紹介する。
本稿では,複数のインスタンス学習型畳み込みニューラルネットワークであるAxialNetを提案する。
そして、HiResCAMと3D許容領域を利用した新しいマスクロスにより、モデルの学習を改善することを目指す。
論文 参考訳(メタデータ) (2021-11-24T01:14:33Z) - IGCN: Image-to-graph Convolutional Network for 2D/3D Deformable
Registration [1.2246649738388387]
単一視点2次元投影画像に対する3次元臓器メッシュの変形可能な登録を実現する画像間畳み込みネットワークを提案する。
複数臓器間の関係を考慮に入れた形状予測は, 臨床的に許容できる精度で放射線像からの呼吸運動と変形を予測するのに有用である。
論文 参考訳(メタデータ) (2021-10-31T12:48:37Z) - Tattoo tomography: Freehand 3D photoacoustic image reconstruction with
an optical pattern [49.240017254888336]
光音響トモグラフィ(PAT)は、形態学的および機能的組織特性の両方を解決することができる新しいイメージング技術である。
現在の欠点は、従来の2Dプローブによって提供される視野の制限である。
本研究では,外部追跡システムを必要としないPATデータの3次元再構成手法を提案する。
論文 参考訳(メタデータ) (2020-11-10T09:27:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。