論文の概要: Robust Federated Learning on Edge Devices with Domain Heterogeneity
- arxiv url: http://arxiv.org/abs/2505.10128v1
- Date: Thu, 15 May 2025 09:53:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-16 22:29:06.270618
- Title: Robust Federated Learning on Edge Devices with Domain Heterogeneity
- Title(参考訳): ドメイン不均一性を考慮したエッジデバイスにおけるロバストフェデレーション学習
- Authors: Huy Q. Le, Latif U. Khan, Choong Seon Hong,
- Abstract要約: Federated Learning (FL)は、分散エッジデバイス間のデータプライバシを確保しながら、協調的なトレーニングを可能にする。
本稿では,FLグローバルモデルの一般化能力を向上させることにより,この問題に対処する新しいフレームワークを提案する。
特徴の多様性とモデルロバスト性を高めるために,プロトタイプベースのFLフレームワークであるFedAPCを紹介する。
- 参考スコア(独自算出の注目度): 13.362209980631876
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Federated Learning (FL) allows collaborative training while ensuring data privacy across distributed edge devices, making it a popular solution for privacy-sensitive applications. However, FL faces significant challenges due to statistical heterogeneity, particularly domain heterogeneity, which impedes the global mode's convergence. In this study, we introduce a new framework to address this challenge by improving the generalization ability of the FL global model under domain heterogeneity, using prototype augmentation. Specifically, we introduce FedAPC (Federated Augmented Prototype Contrastive Learning), a prototype-based FL framework designed to enhance feature diversity and model robustness. FedAPC leverages prototypes derived from the mean features of augmented data to capture richer representations. By aligning local features with global prototypes, we enable the model to learn meaningful semantic features while reducing overfitting to any specific domain. Experimental results on the Office-10 and Digits datasets illustrate that our framework outperforms SOTA baselines, demonstrating superior performance.
- Abstract(参考訳): Federated Learning(FL)は、分散エッジデバイス間のデータプライバシを確保しながら、協調的なトレーニングを可能にする。
しかし、FLは統計的不均一性、特に大域モードの収束を妨げる領域の不均一性のために大きな課題に直面している。
本研究では,この課題に対処する新しい枠組みを,プロトタイプ拡張を用いて,ドメイン不均一性の下でのFLグローバルモデルの一般化能力を向上させることによって導入する。
具体的には,FedAPC(Federmented Augmented Prototype Contrastive Learning)について紹介する。
FedAPCは、拡張データの平均的な特徴から派生したプロトタイプを活用して、よりリッチな表現をキャプチャする。
局所的な特徴をグローバルなプロトタイプと整合させることで、特定のドメインへの過度な適合を減らしながら意味のある意味的特徴を学習することができる。
Office-10とDigitsデータセットの実験結果は、私たちのフレームワークがSOTAベースラインより優れており、優れたパフォーマンスを示していることを示している。
関連論文リスト
- AIGC-assisted Federated Learning for Edge Intelligence: Architecture Design, Research Challenges and Future Directions [41.88981742448266]
フェデレートラーニング(FL)は、プライバシーとセキュリティを確保しながら、大規模な端末データを活用できる。
この課題に対処するために、革新的なデータ合成技術である人工知能生成コンテンツ(AIGC)が、潜在的な解決策の1つとして出現する。
論文 参考訳(メタデータ) (2025-03-26T02:45:19Z) - FedORGP: Guiding Heterogeneous Federated Learning with Orthogonality Regularization on Global Prototypes [31.93057335216804]
フェデレートラーニング(FL)は、分散機械学習に不可欠なフレームワークとして登場した。
現在のアプローチでは、クラスを分離する際の制限に直面している。
本稿では,クラス内プロトタイプの類似性を奨励し,クラス間角分離を拡大するFedtFLORGを紹介する。
論文 参考訳(メタデータ) (2025-02-22T07:02:51Z) - Client Contribution Normalization for Enhanced Federated Learning [4.726250115737579]
スマートフォンやラップトップを含むモバイルデバイスは、分散化された異種データを生成する。
フェデレートラーニング(FL)は、データ共有のない分散デバイス間でグローバルモデルの協調トレーニングを可能にすることで、有望な代替手段を提供する。
本稿では、FLにおけるデータ依存的不均一性に着目し、局所的に訓練されたモデルから抽出された平均潜在表現を活用する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-11-10T04:03:09Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
コンセンサス指向生成による連合学習(FedCOG)を提案する。
FedCOGは、補完的なデータ生成と知識蒸留に基づくモデルトレーニングという、クライアント側の2つの重要なコンポーネントで構成されています。
古典的および実世界のFLデータセットの実験は、FedCOGが一貫して最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2023-12-10T18:49:59Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
フェデレートラーニング(Federated Learning, FL)は、プライバシ制約下での分散学習パラダイムである。
サーバ内のグローバルモデル(FedFTG)を微調整するデータフリー知識蒸留法を提案する。
私たちのFedFTGは最先端(SOTA)のFLアルゴリズムよりも優れており、FedAvg、FedProx、FedDyn、SCAFFOLDの強化のための強力なプラグインとして機能します。
論文 参考訳(メタデータ) (2022-03-17T11:18:17Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
本稿では,エッジ支援型民主化学習機構であるEdge-DemLearnの階層的学習構造を示す。
また、Edge-DemLearnを柔軟なモデルトレーニングメカニズムとして検証し、リージョンに分散制御と集約の方法論を構築する。
論文 参考訳(メタデータ) (2020-12-01T11:46:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。