Robust Federated Learning on Edge Devices with Domain Heterogeneity
- URL: http://arxiv.org/abs/2505.10128v1
- Date: Thu, 15 May 2025 09:53:14 GMT
- Title: Robust Federated Learning on Edge Devices with Domain Heterogeneity
- Authors: Huy Q. Le, Latif U. Khan, Choong Seon Hong,
- Abstract summary: Federated Learning (FL) allows collaborative training while ensuring data privacy across distributed edge devices.<n>We introduce a new framework to address this challenge by improving the generalization ability of the FL global model.<n>We introduce FedAPC, a prototype-based FL framework designed to enhance feature diversity and model robustness.
- Score: 13.362209980631876
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Federated Learning (FL) allows collaborative training while ensuring data privacy across distributed edge devices, making it a popular solution for privacy-sensitive applications. However, FL faces significant challenges due to statistical heterogeneity, particularly domain heterogeneity, which impedes the global mode's convergence. In this study, we introduce a new framework to address this challenge by improving the generalization ability of the FL global model under domain heterogeneity, using prototype augmentation. Specifically, we introduce FedAPC (Federated Augmented Prototype Contrastive Learning), a prototype-based FL framework designed to enhance feature diversity and model robustness. FedAPC leverages prototypes derived from the mean features of augmented data to capture richer representations. By aligning local features with global prototypes, we enable the model to learn meaningful semantic features while reducing overfitting to any specific domain. Experimental results on the Office-10 and Digits datasets illustrate that our framework outperforms SOTA baselines, demonstrating superior performance.
Related papers
- AIGC-assisted Federated Learning for Edge Intelligence: Architecture Design, Research Challenges and Future Directions [41.88981742448266]
Federated learning (FL) can leverage large-scale terminal data while ensuring privacy and security.<n>To address this challenge, artificial intelligence-generated content (AIGC) which is an innovative data synthesis technique emerges as one potential solution.
arXiv Detail & Related papers (2025-03-26T02:45:19Z) - FedORGP: Guiding Heterogeneous Federated Learning with Orthogonality Regularization on Global Prototypes [31.93057335216804]
Federated Learning (FL) has emerged as an essential framework for distributed machine learning.<n>Current approaches face limitations in achieving separation between classes.<n>This paper introduces FedtFLORG, which encourages intra-class prototype similarity and expands the inter-class angular separation.
arXiv Detail & Related papers (2025-02-22T07:02:51Z) - Client Contribution Normalization for Enhanced Federated Learning [4.726250115737579]
Mobile devices, including smartphones and laptops, generate decentralized and heterogeneous data.
Federated Learning (FL) offers a promising alternative by enabling collaborative training of a global model across decentralized devices without data sharing.
This paper focuses on data-dependent heterogeneity in FL and proposes a novel approach leveraging mean latent representations extracted from locally trained models.
arXiv Detail & Related papers (2024-11-10T04:03:09Z) - On ADMM in Heterogeneous Federated Learning: Personalization, Robustness, and Fairness [16.595935469099306]
We propose FLAME, an optimization framework by utilizing the alternating direction method of multipliers (ADMM) to train personalized and global models.
Our theoretical analysis establishes the global convergence and two kinds of convergence rates for FLAME under mild assumptions.
Our experimental findings show that FLAME outperforms state-of-the-art methods in convergence and accuracy, and it achieves higher test accuracy under various attacks.
arXiv Detail & Related papers (2024-07-23T11:35:42Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
We propose federated learning with consensus-oriented generation (FedCOG)
FedCOG consists of two key components at the client side: complementary data generation and knowledge-distillation-based model training.
Experiments on classical and real-world FL datasets show that FedCOG consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-12-10T18:49:59Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - FS-Real: Towards Real-World Cross-Device Federated Learning [60.91678132132229]
Federated Learning (FL) aims to train high-quality models in collaboration with distributed clients while not uploading their local data.
There is still a considerable gap between the flourishing FL research and real-world scenarios, mainly caused by the characteristics of heterogeneous devices and its scales.
We propose an efficient and scalable prototyping system for real-world cross-device FL, FS-Real.
arXiv Detail & Related papers (2023-03-23T15:37:17Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
Federated Learning (FL) is an emerging distributed learning paradigm under privacy constraint.
We propose a data-free knowledge distillation method to fine-tune the global model in the server (FedFTG)
Our FedFTG significantly outperforms the state-of-the-art (SOTA) FL algorithms and can serve as a strong plugin for enhancing FedAvg, FedProx, FedDyn, and SCAFFOLD.
arXiv Detail & Related papers (2022-03-17T11:18:17Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.