AIGC-assisted Federated Learning for Edge Intelligence: Architecture Design, Research Challenges and Future Directions
- URL: http://arxiv.org/abs/2503.20166v1
- Date: Wed, 26 Mar 2025 02:45:19 GMT
- Title: AIGC-assisted Federated Learning for Edge Intelligence: Architecture Design, Research Challenges and Future Directions
- Authors: Xianke Qiang, Zheng Chang, Ying-Chang Liang,
- Abstract summary: Federated learning (FL) can leverage large-scale terminal data while ensuring privacy and security.<n>To address this challenge, artificial intelligence-generated content (AIGC) which is an innovative data synthesis technique emerges as one potential solution.
- Score: 41.88981742448266
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) can fully leverage large-scale terminal data while ensuring privacy and security, and is considered as a distributed alternative for the centralized machine learning. However, the issue of data heterogeneity poses limitations on FL's performance. To address this challenge, artificial intelligence-generated content (AIGC) which is an innovative data synthesis technique emerges as one potential solution. In this article, we first provide an overview of the system architecture, performance metrics, and challenges associated with AIGC-assistant FL system design. We then propose the Generative federated learning (GenFL) architecture and present its workflow, including the design of aggregation and weight policy. Finally, using the CIFAR10 and CIFAR100 datasets, we employ diffusion models to generate dataset and improve FL performance. Experiments conducted under various non-independent and identically distributed (non-IID) data distributions demonstrate the effectiveness of GenFL on overcoming the bottlenecks in FL caused by data heterogeneity. Open research directions in the research of AIGC-assisted FL are also discussed.
Related papers
- FLIGAN: Enhancing Federated Learning with Incomplete Data using GAN [1.5749416770494706]
Federated Learning (FL) provides a privacy-preserving mechanism for distributed training of machine learning models on networked devices.
We propose FLIGAN, a novel approach to address the issue of data incompleteness in FL.
Our methodology adheres to FL's privacy requirements by generating synthetic data in a federated manner without sharing the actual data in the process.
arXiv Detail & Related papers (2024-03-25T16:49:38Z) - FedLPS: Heterogeneous Federated Learning for Multiple Tasks with Local
Parameter Sharing [14.938531944702193]
We propose Federated Learning with Local Heterogeneous Sharing (FedLPS)
FedLPS uses transfer learning to facilitate the deployment of multiple tasks on a single device by dividing the local model into a shareable encoder and task-specific encoders.
FedLPS significantly outperforms the state-of-the-art (SOTA) FL frameworks by up to 4.88% and reduces the computational resource consumption by 21.3%.
arXiv Detail & Related papers (2024-02-13T16:30:30Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
We propose federated learning with consensus-oriented generation (FedCOG)
FedCOG consists of two key components at the client side: complementary data generation and knowledge-distillation-based model training.
Experiments on classical and real-world FL datasets show that FedCOG consistently outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-12-10T18:49:59Z) - FedConv: Enhancing Convolutional Neural Networks for Handling Data
Heterogeneity in Federated Learning [34.37155882617201]
Federated learning (FL) is an emerging paradigm in machine learning, where a shared model is collaboratively learned using data from multiple devices.
We systematically investigate the impact of different architectural elements, such as activation functions and normalization layers, on the performance within heterogeneous FL.
Our findings indicate that with strategic architectural modifications, pure CNNs can achieve a level of robustness that either matches or even exceeds that of ViTs.
arXiv Detail & Related papers (2023-10-06T17:57:50Z) - Feature Matching Data Synthesis for Non-IID Federated Learning [7.740333805796447]
Federated learning (FL) trains neural networks on edge devices without collecting data at a central server.
This paper proposes a hard feature matching data synthesis (HFMDS) method to share auxiliary data besides local models.
For better privacy preservation, we propose a hard feature augmentation method to transfer real features towards the decision boundary.
arXiv Detail & Related papers (2023-08-09T07:49:39Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Resource-Aware Heterogeneous Federated Learning using Neural Architecture Search [8.184714897613166]
Federated Learning (FL) is used to train AI/ML models in distributed and privacy-preserving settings.
We propose Resource-aware Federated Learning (RaFL)
RaFL allocates resource-aware specialized models to edge devices using Neural Architecture Search (NAS)
arXiv Detail & Related papers (2022-11-09T09:38:57Z) - FedHiSyn: A Hierarchical Synchronous Federated Learning Framework for
Resource and Data Heterogeneity [56.82825745165945]
Federated Learning (FL) enables training a global model without sharing the decentralized raw data stored on multiple devices to protect data privacy.
We propose a hierarchical synchronous FL framework, i.e., FedHiSyn, to tackle the problems of straggler effects and outdated models.
We evaluate the proposed framework based on MNIST, EMNIST, CIFAR10 and CIFAR100 datasets and diverse heterogeneous settings of devices.
arXiv Detail & Related papers (2022-06-21T17:23:06Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
Federated Learning (FL) is an emerging distributed learning paradigm under privacy constraint.
We propose a data-free knowledge distillation method to fine-tune the global model in the server (FedFTG)
Our FedFTG significantly outperforms the state-of-the-art (SOTA) FL algorithms and can serve as a strong plugin for enhancing FedAvg, FedProx, FedDyn, and SCAFFOLD.
arXiv Detail & Related papers (2022-03-17T11:18:17Z) - Rethinking Architecture Design for Tackling Data Heterogeneity in
Federated Learning [53.73083199055093]
We show that attention-based architectures (e.g., Transformers) are fairly robust to distribution shifts.
Our experiments show that replacing convolutional networks with Transformers can greatly reduce catastrophic forgetting of previous devices.
arXiv Detail & Related papers (2021-06-10T21:04:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.