GE-Chat: A Graph Enhanced RAG Framework for Evidential Response Generation of LLMs
- URL: http://arxiv.org/abs/2505.10143v1
- Date: Thu, 15 May 2025 10:17:35 GMT
- Title: GE-Chat: A Graph Enhanced RAG Framework for Evidential Response Generation of LLMs
- Authors: Longchao Da, Parth Mitesh Shah, Kuan-Ru Liou, Jiaxing Zhang, Hua Wei,
- Abstract summary: This paper proposes GE-Chat, a knowledge Graph enhanced retrieval-augmented generation framework to provide evidence-based response generation.<n> Specifically, when the user uploads a material document, a knowledge graph will be created, which helps construct a retrieval-augmented agent.<n>We leverage Chain-of-Thought (CoT) logic generation, n-hop sub-graph searching, and entailment-based sentence generation to realize accurate evidence retrieval.
- Score: 6.3596531375179515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models are now key assistants in human decision-making processes. However, a common note always seems to follow: "LLMs can make mistakes. Be careful with important info." This points to the reality that not all outputs from LLMs are dependable, and users must evaluate them manually. The challenge deepens as hallucinated responses, often presented with seemingly plausible explanations, create complications and raise trust issues among users. To tackle such issue, this paper proposes GE-Chat, a knowledge Graph enhanced retrieval-augmented generation framework to provide Evidence-based response generation. Specifically, when the user uploads a material document, a knowledge graph will be created, which helps construct a retrieval-augmented agent, enhancing the agent's responses with additional knowledge beyond its training corpus. Then we leverage Chain-of-Thought (CoT) logic generation, n-hop sub-graph searching, and entailment-based sentence generation to realize accurate evidence retrieval. We demonstrate that our method improves the existing models' performance in terms of identifying the exact evidence in a free-form context, providing a reliable way to examine the resources of LLM's conclusion and help with the judgment of the trustworthiness.
Related papers
- KnowTrace: Bootstrapping Iterative Retrieval-Augmented Generation with Structured Knowledge Tracing [64.38243807002878]
We present KnowTrace, an elegant RAG framework to mitigate the context overload in large language models.<n>KnowTrace autonomously traces out desired knowledge triplets to organize a specific knowledge graph relevant to the input question.<n>It consistently surpasses existing methods across three multi-hop question answering benchmarks.
arXiv Detail & Related papers (2025-05-26T17:22:20Z) - Oreo: A Plug-in Context Reconstructor to Enhance Retrieval-Augmented Generation [28.568010424711563]
Retrieval-Augmented Generation (RAG) aims to augment the capabilities of Large Language Models (LLMs)<n>We introduce a compact, efficient, and pluggable module designed to refine retrieved chunks before using them for generation.
arXiv Detail & Related papers (2025-02-18T16:38:39Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
We introduce an Adaptive Multi-Aspect Retrieval-augmented over KGs (Amar) framework.<n>This method retrieves knowledge including entities, relations, and subgraphs, and converts each piece of retrieved text into prompt embeddings.<n>Our method has achieved state-of-the-art performance on two common datasets.
arXiv Detail & Related papers (2024-12-24T16:38:04Z) - Integrating Large Language Models with Graph-based Reasoning for Conversational Question Answering [58.17090503446995]
We focus on a conversational question answering task which combines the challenges of understanding questions in context and reasoning over evidence gathered from heterogeneous sources like text, knowledge graphs, tables, and infoboxes.
Our method utilizes a graph structured representation to aggregate information about a question and its context.
arXiv Detail & Related papers (2024-06-14T13:28:03Z) - Peering into the Mind of Language Models: An Approach for Attribution in Contextual Question Answering [9.86691461253151]
We introduce a novel method for attribution in contextual question answering, leveraging the hidden state representations of large language models (LLMs)
Our approach bypasses the need for extensive model retraining and retrieval model overhead, offering granular attributions and preserving the quality of generated answers.
We present Verifiability-granular, an attribution dataset which has token level annotations for LLM generations in the contextual question answering setup.
arXiv Detail & Related papers (2024-05-28T09:12:44Z) - CuriousLLM: Elevating Multi-Document Question Answering with LLM-Enhanced Knowledge Graph Reasoning [0.9295048974480845]
We propose CuriousLLM, an enhancement that integrates a curiosity-driven reasoning mechanism into an LLM agent.<n>This mechanism enables the agent to generate relevant follow-up questions, thereby guiding the information retrieval process more efficiently.<n>Our experiments show that CuriousLLM significantly boosts LLM performance in multi-document question answering (MD-QA)
arXiv Detail & Related papers (2024-04-13T20:43:46Z) - Context Matters: Pushing the Boundaries of Open-Ended Answer Generation with Graph-Structured Knowledge Context [4.1229332722825]
This paper introduces a novel framework that combines graph-driven context retrieval in conjunction to knowledge graphs based enhancement.
We conduct experiments on various Large Language Models (LLMs) with different parameter sizes to evaluate their ability to ground knowledge and determine factual accuracy in answers to open-ended questions.
Our methodology GraphContextGen consistently outperforms dominant text-based retrieval systems, demonstrating its robustness and adaptability to a larger number of use cases.
arXiv Detail & Related papers (2024-01-23T11:25:34Z) - LLatrieval: LLM-Verified Retrieval for Verifiable Generation [67.93134176912477]
Verifiable generation aims to let the large language model (LLM) generate text with supporting documents.
We propose LLatrieval (Large Language Model Verified Retrieval), where the LLM updates the retrieval result until it verifies that the retrieved documents can sufficiently support answering the question.
Experiments show that LLatrieval significantly outperforms extensive baselines and achieves state-of-the-art results.
arXiv Detail & Related papers (2023-11-14T01:38:02Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
Large Language Models (LLMs) have exhibited impressive generation capabilities, but they suffer from hallucinations when relying on their internal knowledge.
Retrieval-augmented LLMs have emerged as a potential solution to ground LLMs in external knowledge.
arXiv Detail & Related papers (2023-10-31T04:37:57Z) - Self-RAG: Learning to Retrieve, Generate, and Critique through
Self-Reflection [74.51523859064802]
We introduce a new framework called Self-Reflective Retrieval-Augmented Generation (Self-RAG)
Self-RAG enhances an LM's quality and factuality through retrieval and self-reflection.
It significantly outperforms state-of-the-art LLMs and retrieval-augmented models on a diverse set of tasks.
arXiv Detail & Related papers (2023-10-17T18:18:32Z) - Enabling Large Language Models to Generate Text with Citations [37.64884969997378]
Large language models (LLMs) have emerged as a widely-used tool for information seeking.
Our aim is to allow LLMs to generate text with citations, improving their factual correctness and verifiability.
We propose ALCE, the first benchmark for Automatic LLMs' Citation Evaluation.
arXiv Detail & Related papers (2023-05-24T01:53:49Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
Large language models (LLMs) are able to generate human-like, fluent responses for many downstream tasks.
This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules.
arXiv Detail & Related papers (2023-02-24T18:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.