論文の概要: Multi-domain Multilingual Sentiment Analysis in Industry: Predicting Aspect-based Opinion Quadruples
- arxiv url: http://arxiv.org/abs/2505.10389v1
- Date: Thu, 15 May 2025 15:11:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-16 22:29:06.375465
- Title: Multi-domain Multilingual Sentiment Analysis in Industry: Predicting Aspect-based Opinion Quadruples
- Title(参考訳): 産業における多ドメイン多言語感性分析--視点に基づく四重項の予測
- Authors: Benjamin White, Anastasia Shimorina,
- Abstract要約: 本稿では,大規模言語モデル(LLM)を用いたアスペクトベース感情分析システムの設計について検討する。
我々は、異なるドメインや言語にわたるテキストデータからアスペクトカテゴリ、感情極性、ターゲット、意見表現を識別する4つの意見抽出に焦点を当てる。
- 参考スコア(独自算出の注目度): 1.5039745292757671
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper explores the design of an aspect-based sentiment analysis system using large language models (LLMs) for real-world use. We focus on quadruple opinion extraction -- identifying aspect categories, sentiment polarity, targets, and opinion expressions from text data across different domains and languages. Using internal datasets, we investigate whether a single fine-tuned model can effectively handle multiple domain-specific taxonomies simultaneously. We demonstrate that a combined multi-domain model achieves performance comparable to specialized single-domain models while reducing operational complexity. We also share lessons learned for handling non-extractive predictions and evaluating various failure modes when developing LLM-based systems for structured prediction tasks.
- Abstract(参考訳): 本稿では,大規模言語モデル(LLM)を用いたアスペクトベース感情分析システムの設計について検討する。
我々は、異なるドメインや言語にわたるテキストデータからアスペクトカテゴリ、感情極性、ターゲット、意見表現を識別する4つの意見抽出に焦点を当てる。
内部データセットを用いて、単一微調整モデルが複数のドメイン固有の分類を同時に処理できるかどうかを検討する。
統合されたマルチドメインモデルは、運用上の複雑さを低減しつつ、特殊な単一ドメインモデルに匹敵する性能を実現することを実証する。
また、構造化予測タスクのためのLLMベースのシステムを開発する際に、非抽出予測の扱いから学んだ教訓を共有し、様々な障害モードを評価する。
関連論文リスト
- Utilizing Large Language Models for Event Deconstruction to Enhance Multimodal Aspect-Based Sentiment Analysis [2.1329326061804816]
本稿では,イベント分解のためのLarge Language Models (LLMs)を導入し,マルチモーダル・アスペクト・ベース・センチメント分析(MABSA-RL)のための強化学習フレームワークを提案する。
実験の結果,MABSA-RLは2つのベンチマークデータセットにおいて既存手法よりも優れていた。
論文 参考訳(メタデータ) (2024-10-18T03:40:45Z) - Corpus Considerations for Annotator Modeling and Scaling [9.263562546969695]
一般的に使われているユーザトークンモデルは、より複雑なモデルよりも一貫して優れています。
以上の結果から,コーパス統計とアノテータモデリング性能の関係が明らかになった。
論文 参考訳(メタデータ) (2024-04-02T22:27:24Z) - Domain-Expanded ASTE: Rethinking Generalization in Aspect Sentiment Triplet Extraction [67.54420015049732]
Aspect Sentiment Triplet extract (ASTE) は感情分析における課題であり、人間の感情に対するきめ細かい洞察を提供することを目的としている。
既存のベンチマークは2つのドメインに限定されており、目に見えないドメイン上でのモデルパフォーマンスを評価しない。
各種ドメインのサンプルに注釈を付けることでドメイン拡張ベンチマークを導入し,ドメイン内設定とドメイン外設定の両方でモデルの評価を可能にする。
論文 参考訳(メタデータ) (2023-05-23T18:01:49Z) - Understanding Domain Learning in Language Models Through Subpopulation
Analysis [35.16003054930906]
現代のニューラルネットワークアーキテクチャにおいて、異なるドメインがどのようにコード化されているかを調べる。
我々は、自然言語領域、モデルサイズ、使用したトレーニングデータ量との関係を分析する。
論文 参考訳(メタデータ) (2022-10-22T21:12:57Z) - Assessing Out-of-Domain Language Model Performance from Few Examples [38.245449474937914]
ドメイン外性能(OOD)を数ショットで予測するタスクに対処する。
数ショットの例でモデル精度をみると、このタスクのパフォーマンスをベンチマークする。
帰属に基づく要因がOODの相対モデルの性能のランク付けに有効であることを示す。
論文 参考訳(メタデータ) (2022-10-13T04:45:26Z) - X2Parser: Cross-Lingual and Cross-Domain Framework for Task-Oriented
Compositional Semantic Parsing [51.81533991497547]
タスク指向コンポジションセマンティックパーシング(TCSP)は複雑なネストされたユーザクエリを処理する。
本報告では,TCSPの変換可能なクロスランガルとクロスドメインを比較した。
本稿では,フラット化意図とスロット表現を別々に予測し,両方の予測タスクをシーケンスラベリング問題にキャストすることを提案する。
論文 参考訳(メタデータ) (2021-06-07T16:40:05Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
マルチショット設定のモデル一般化能力を向上させるための3つの手法を検討する。
ラベル付きデータの比率の異なる10の公開nerデータセットについて経験的比較を行う。
マルチショットとトレーニングフリーの両方の設定で最新の結果を作成します。
論文 参考訳(メタデータ) (2020-12-29T23:43:16Z) - RADDLE: An Evaluation Benchmark and Analysis Platform for Robust
Task-oriented Dialog Systems [75.87418236410296]
我々はraddleベンチマーク、コーパスのコレクション、および様々なドメインのモデルのパフォーマンスを評価するためのツールを紹介します。
RADDLEは強力な一般化能力を持つモデルを好んで奨励するように設計されている。
先行学習と微調整に基づく最近の最先端システムの評価を行い,異種ダイアログコーパスに基づく基礎的な事前学習が,ドメインごとの個別モデルをトレーニングするよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-12-29T08:58:49Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
本稿では,名前付きエンティティ認識(NER)タスクに対する一般的な評価手法を提案する。
提案手法は,モデルとデータセットの違いと,それらの間の相互作用を解釈することを可能にする。
分析ツールを利用可能にすることで、将来の研究者が同様の分析を実行し、この分野の進歩を促進することができる。
論文 参考訳(メタデータ) (2020-11-13T10:53:27Z) - CDEvalSumm: An Empirical Study of Cross-Dataset Evaluation for Neural
Summarization Systems [121.78477833009671]
データセット間設定下での様々な要約モデルの性能について検討する。
異なるドメインの5つのデータセットに対する11の代表的な要約システムに関する包括的な研究は、モデルアーキテクチャと生成方法の影響を明らかにしている。
論文 参考訳(メタデータ) (2020-10-11T02:19:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。