Uncovering Magnetic Phases with Synthetic Data and Physics-Informed Training
- URL: http://arxiv.org/abs/2505.10393v1
- Date: Thu, 15 May 2025 15:16:16 GMT
- Title: Uncovering Magnetic Phases with Synthetic Data and Physics-Informed Training
- Authors: Agustin Medina, Marcelo Arlego, Carlos A. Lamas,
- Abstract summary: We investigate the efficient learning of magnetic phases using artificial neural networks trained on synthetic data.<n>We incorporate two key forms of physics-informed guidance to enhance model performance.<n>Our results show that synthetic, structured, and computationally efficient training schemes can reveal physically meaningful phase boundaries.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the efficient learning of magnetic phases using artificial neural networks trained on synthetic data, combining computational simplicity with physics-informed strategies. Focusing on the diluted Ising model, which lacks an exact analytical solution, we explore two complementary approaches: a supervised classification using simple dense neural networks, and an unsupervised detection of phase transitions using convolutional autoencoders trained solely on idealized spin configurations. To enhance model performance, we incorporate two key forms of physics-informed guidance. First, we exploit architectural biases which preferentially amplify features related to symmetry breaking. Second, we include training configurations that explicitly break $\mathbb{Z}_2$ symmetry, reinforcing the network's ability to detect ordered phases. These mechanisms, acting in tandem, increase the network's sensitivity to phase structure even in the absence of explicit labels. We validate the machine learning predictions through comparison with direct numerical estimates of critical temperatures and percolation thresholds. Our results show that synthetic, structured, and computationally efficient training schemes can reveal physically meaningful phase boundaries, even in complex systems. This framework offers a low-cost and robust alternative to conventional methods, with potential applications in broader condensed matter and statistical physics contexts.
Related papers
- Fusing CFD and measurement data using transfer learning [49.1574468325115]
We introduce a non-linear method based on neural networks combining simulation and measurement data via transfer learning.<n>In a first step, the neural network is trained on simulation data to learn spatial features of the distributed quantities.<n>The second step involves transfer learning on the measurement data to correct for systematic errors between simulation and measurement by only re-training a small subset of the entire neural network model.
arXiv Detail & Related papers (2025-07-28T07:21:46Z) - Neural Network Reprogrammability: A Unified Theme on Model Reprogramming, Prompt Tuning, and Prompt Instruction [55.914891182214475]
We introduce neural network reprogrammability as a unifying framework for model adaptation.<n>We present a taxonomy that categorizes such information manipulation approaches across four key dimensions.<n>We also analyze remaining technical challenges and ethical considerations.
arXiv Detail & Related papers (2025-06-05T05:42:27Z) - Certified Neural Approximations of Nonlinear Dynamics [52.79163248326912]
In safety-critical contexts, the use of neural approximations requires formal bounds on their closeness to the underlying system.<n>We propose a novel, adaptive, and parallelizable verification method based on certified first-order models.
arXiv Detail & Related papers (2025-05-21T13:22:20Z) - Manifold meta-learning for reduced-complexity neural system identification [1.0276024900942875]
We propose a meta-learning framework that discovers a low-dimensional manifold.<n>This manifold is learned from a meta-dataset of input-output sequences generated by a class of related dynamical systems.<n>Unlike bilevel meta-learning approaches, our method employs an auxiliary neural network to map datasets directly onto the learned manifold.
arXiv Detail & Related papers (2025-04-16T06:49:56Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - Learning-based adaption of robotic friction models [50.72489248401199]
We introduce a novel approach to adapt an existing friction model to new dynamics using as little data as possible.<n>Our method does not rely on data with external load during training, eliminating the need for external torque sensors.
arXiv Detail & Related papers (2023-10-25T14:50:15Z) - In-Context Convergence of Transformers [63.04956160537308]
We study the learning dynamics of a one-layer transformer with softmax attention trained via gradient descent.
For data with imbalanced features, we show that the learning dynamics take a stage-wise convergence process.
arXiv Detail & Related papers (2023-10-08T17:55:33Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Learning two-phase microstructure evolution using neural operators and
autoencoder architectures [0.0]
We develop a new framework that integrates a convolutional autoencoder architecture with a deep neural operator (DeepONet)
DeepONet learns the mesoscale dynamics of the microstructure evolution in the latent space.
The result is an efficient and accurate accelerated phase-field framework.
arXiv Detail & Related papers (2022-04-11T18:34:59Z) - Unsupervised and supervised learning of interacting topological phases
from single-particle correlation functions [0.0]
We show that unsupervised and supervised machine learning techniques are able to predict phases of a non-exactly solvable model when trained on data of a solvable model.
In particular, we employ a training set made by single-particle correlation functions of a non-interacting quantum wire.
We show that both the principal component analysis and the convolutional neural networks trained on the data of the non-interacting model can identify the topological phases of the interacting model with a high degree of accuracy.
arXiv Detail & Related papers (2022-02-18T16:02:29Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Neural Network Training with Asymmetric Crosspoint Elements [1.0773924713784704]
asymmetric conductance modulation of practical resistive devices critically degrades the classification of networks trained with conventional algorithms.
Here, we describe and experimentally demonstrate an alternative fully-parallel training algorithm: Hamiltonian Descent.
We provide critical intuition on why device asymmetry is fundamentally incompatible with conventional training algorithms and how the new approach exploits it as a useful feature instead.
arXiv Detail & Related papers (2022-01-31T17:41:36Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
It is shown that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
It is shown, that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
arXiv Detail & Related papers (2021-10-26T07:02:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.