IN-RIL: Interleaved Reinforcement and Imitation Learning for Policy Fine-Tuning
- URL: http://arxiv.org/abs/2505.10442v1
- Date: Thu, 15 May 2025 16:01:21 GMT
- Title: IN-RIL: Interleaved Reinforcement and Imitation Learning for Policy Fine-Tuning
- Authors: Dechen Gao, Hang Wang, Hanchu Zhou, Nejib Ammar, Shatadal Mishra, Ahmadreza Moradipari, Iman Soltani, Junshan Zhang,
- Abstract summary: Imitation learning (IL) and reinforcement learning (RL) each offer distinct advantages for robotics policy learning.<n>While existing robot learning approaches using IL-based pre-training followed by RL-based fine-tuning are promising, this two-step learning paradigm often suffers from instability and poor sample efficiency during the RL fine-tuning phase.<n>In this work, we introduce IN-RIL, INterleaved Reinforcement learning and Imitation Learning, for policy fine-tuning.
- Score: 25.642307880136332
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Imitation learning (IL) and reinforcement learning (RL) each offer distinct advantages for robotics policy learning: IL provides stable learning from demonstrations, and RL promotes generalization through exploration. While existing robot learning approaches using IL-based pre-training followed by RL-based fine-tuning are promising, this two-step learning paradigm often suffers from instability and poor sample efficiency during the RL fine-tuning phase. In this work, we introduce IN-RIL, INterleaved Reinforcement learning and Imitation Learning, for policy fine-tuning, which periodically injects IL updates after multiple RL updates and hence can benefit from the stability of IL and the guidance of expert data for more efficient exploration throughout the entire fine-tuning process. Since IL and RL involve different optimization objectives, we develop gradient separation mechanisms to prevent destructive interference during \ABBR fine-tuning, by separating possibly conflicting gradient updates in orthogonal subspaces. Furthermore, we conduct rigorous analysis, and our findings shed light on why interleaving IL with RL stabilizes learning and improves sample-efficiency. Extensive experiments on 14 robot manipulation and locomotion tasks across 3 benchmarks, including FurnitureBench, OpenAI Gym, and Robomimic, demonstrate that \ABBR can significantly improve sample efficiency and mitigate performance collapse during online finetuning in both long- and short-horizon tasks with either sparse or dense rewards. IN-RIL, as a general plug-in compatible with various state-of-the-art RL algorithms, can significantly improve RL fine-tuning, e.g., from 12\% to 88\% with 6.3x improvement in the success rate on Robomimic Transport. Project page: https://github.com/ucd-dare/IN-RIL.
Related papers
- Shuffle-R1: Efficient RL framework for Multimodal Large Language Models via Data-centric Dynamic Shuffle [53.239242017802056]
Reinforcement learning (RL) has emerged as an effective post-training paradigm for enhancing the reasoning capabilities of multimodal large language model (MLLM)<n>However, current RL pipelines often suffer from training inefficiencies caused by two underexplored issues: Advantage Collapsing and Rollout Silencing.<n>We propose Shuffle-R1, a simple yet principled framework that improves RL fine-tuning efficiency by dynamically restructuring trajectory sampling and batch composition.
arXiv Detail & Related papers (2025-08-07T17:53:47Z) - Agentic Reinforced Policy Optimization [66.96989268893932]
Large-scale reinforcement learning with verifiable rewards (RLVR) has demonstrated its effectiveness in harnessing the potential of large language models (LLMs) for single-turn reasoning tasks.<n>Current RL algorithms inadequately balance the models' intrinsic long-horizon reasoning capabilities and their proficiency in multi-turn tool interactions.<n>We propose Agentic Reinforced Policy Optimization (ARPO), a novel agentic RL algorithm tailored for training multi-turn LLM-based agents.
arXiv Detail & Related papers (2025-07-26T07:53:11Z) - Ring-lite: Scalable Reasoning via C3PO-Stabilized Reinforcement Learning for LLMs [51.21041884010009]
Ring-lite is a Mixture-of-Experts (MoE)-based large language model optimized via reinforcement learning (RL)<n>Our approach matches the performance of state-of-the-art (SOTA) small-scale reasoning models on challenging benchmarks.
arXiv Detail & Related papers (2025-06-17T17:12:34Z) - Filtering Learning Histories Enhances In-Context Reinforcement Learning [12.697029805927398]
Transformer models (TMs) have exhibited remarkable in-context reinforcement learning capabilities.<n>We propose a simple yet effective approach, learning history filtering (LHF) to enhance ICRL.<n>LHF is the first approach to avoid source suboptimality by dataset preprocessing.
arXiv Detail & Related papers (2025-05-21T06:00:41Z) - Dynamic Learning Rate for Deep Reinforcement Learning: A Bandit Approach [0.9549646359252346]
In deep Reinforcement Learning (RL) models trained using gradient-based techniques, the choice of gradient and its learning rate are crucial to achieving good performance.<n>We propose dynamic Learning Rate for deep Reinforcement Learning (LRRL), a meta-learning approach that selects the learning rate based on the agent's performance during training.
arXiv Detail & Related papers (2024-10-16T14:15:28Z) - Symmetric Reinforcement Learning Loss for Robust Learning on Diverse Tasks and Model Scales [13.818149654692863]
Reinforcement learning (RL) training is inherently unstable due to factors such as moving targets and high gradient variance.
In this work, we improve the stability of RL training by adapting the reverse cross entropy (RCE) from supervised learning for noisy data to define a symmetric RL loss.
arXiv Detail & Related papers (2024-05-27T19:28:33Z) - Imitation Bootstrapped Reinforcement Learning [31.916571349600684]
imitation bootstrapped reinforcement learning (IBRL) is a novel framework for sample-efficient reinforcement learning.
We evaluate IBRL on 6 simulation and 3 real-world tasks spanning various difficulty levels.
arXiv Detail & Related papers (2023-11-03T19:03:20Z) - Action-Quantized Offline Reinforcement Learning for Robotic Skill
Learning [68.16998247593209]
offline reinforcement learning (RL) paradigm provides recipe to convert static behavior datasets into policies that can perform better than the policy that collected the data.
In this paper, we propose an adaptive scheme for action quantization.
We show that several state-of-the-art offline RL methods such as IQL, CQL, and BRAC improve in performance on benchmarks when combined with our proposed discretization scheme.
arXiv Detail & Related papers (2023-10-18T06:07:10Z) - BiERL: A Meta Evolutionary Reinforcement Learning Framework via Bilevel
Optimization [34.24884427152513]
We propose a general meta ERL framework via bilevel optimization (BiERL)
We design an elegant meta-level architecture that embeds the inner-level's evolving experience into an informative population representation.
We perform extensive experiments in MuJoCo and Box2D tasks to verify that as a general framework, BiERL outperforms various baselines and consistently improves the learning performance for a diversity of ERL algorithms.
arXiv Detail & Related papers (2023-08-01T09:31:51Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - Learning to Optimize for Reinforcement Learning [58.01132862590378]
Reinforcement learning (RL) is essentially different from supervised learning, and in practice, these learneds do not work well even in simple RL tasks.
Agent-gradient distribution is non-independent and identically distributed, leading to inefficient meta-training.
We show that, although only trained in toy tasks, our learned can generalize unseen complex tasks in Brax.
arXiv Detail & Related papers (2023-02-03T00:11:02Z) - Dynamics Generalization via Information Bottleneck in Deep Reinforcement
Learning [90.93035276307239]
We propose an information theoretic regularization objective and an annealing-based optimization method to achieve better generalization ability in RL agents.
We demonstrate the extreme generalization benefits of our approach in different domains ranging from maze navigation to robotic tasks.
This work provides a principled way to improve generalization in RL by gradually removing information that is redundant for task-solving.
arXiv Detail & Related papers (2020-08-03T02:24:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.