On the quantum computational complexity of classical linear dynamics with geometrically local interactions: Dequantization and universality
- URL: http://arxiv.org/abs/2505.10445v1
- Date: Thu, 15 May 2025 16:06:22 GMT
- Title: On the quantum computational complexity of classical linear dynamics with geometrically local interactions: Dequantization and universality
- Authors: Kazuki Sakamoto, Keisuke Fujii,
- Abstract summary: A quantum algorithm offers an exponential speedup over any classical algorithm in simulating classical dynamics with long-range interactions.<n>Many real-world classical systems, such as those arising from partial differential equations, exhibit only local interactions.<n>This work offers new insights into the complexity of classical dynamics governed by partial differential equations.
- Score: 0.9002260638342727
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The simulation of large-scale classical systems in exponentially small space on quantum computers has gained attention. The prior work demonstrated that a quantum algorithm offers an exponential speedup over any classical algorithm in simulating classical dynamics with long-range interactions. However, many real-world classical systems, such as those arising from partial differential equations, exhibit only local interactions. The question remains whether quantum algorithms can still provide exponential speedup under this condition. In this work, we thoroughly characterize the computational complexity of quantum algorithms for simulating such geometrically local systems. First, we dequantize the quantum algorithm for simulating short-time (polynomial-time) dynamics of such systems. This implies that the problem of simulating this dynamics does not yield any exponential quantum advantage. Second, we show that quantum algorithms for short-time dynamics have the same computational complexity as polynomial-time probabilistic classical computation. Third, we show that the computational complexity of quantum algorithms for long-time (exponential-time) dynamics is captured by exponential-time and polynomial-space quantum computation. This suggests a super-polynomial time advantage when restricting the computation to polynomial-space, or an exponential space advantage otherwise. This work offers new insights into the complexity of classical dynamics governed by partial differential equations, providing a pathway for achieving quantum advantage in practical problems.
Related papers
- Polynomial time and space quantum algorithm for the simulation of non-Markovian quantum dynamics [5.19702850808286]
We developed an efficient quantum algorithm for the simulation of non-Markovian quantum dynamics, based on the Feynman path.<n>It demonstrates the quantum advantage by overcoming the exponential cost on classical computers.<n>The algorithm is efficient regardless of whether entanglement due to non-Markovianity is low or high, making it a unified framework for non-Markovian dynamics in open quantum system.
arXiv Detail & Related papers (2024-11-27T09:25:17Z) - An Efficient Classical Algorithm for Simulating Short Time 2D Quantum Dynamics [2.891413712995642]
We introduce an efficient classical algorithm for simulating short-time dynamics in 2D quantum systems.<n>Our results reveal the inherent simplicity in the complexity of short-time 2D quantum dynamics.<n>This work advances our understanding of the boundary between classical and quantum computation.
arXiv Detail & Related papers (2024-09-06T09:59:12Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Evaluation of phase shifts for non-relativistic elastic scattering using quantum computers [39.58317527488534]
This work reports the development of an algorithm that makes it possible to obtain phase shifts for generic non-relativistic elastic scattering processes on a quantum computer.
arXiv Detail & Related papers (2024-07-04T21:11:05Z) - Solving reaction dynamics with quantum computing algorithms [42.408991654684876]
We study quantum algorithms for response functions, relevant for describing different reactions governed by linear response.<n>We focus on nuclear-physics applications and consider a qubit-efficient mapping on the lattice, which can efficiently represent the large volumes required for realistic scattering simulations.
arXiv Detail & Related papers (2024-03-30T00:21:46Z) - Quantum Clustering with k-Means: a Hybrid Approach [117.4705494502186]
We design, implement, and evaluate three hybrid quantum k-Means algorithms.
We exploit quantum phenomena to speed up the computation of distances.
We show that our hybrid quantum k-Means algorithms can be more efficient than the classical version.
arXiv Detail & Related papers (2022-12-13T16:04:16Z) - Classical simulation of short-time quantum dynamics [0.0]
We present classical algorithms for approximating the dynamics of local observables and nonlocal quantities.
We establish a novel quantum speed limit, a bound on dynamical phase transitions, and a concentration bound for product states evolved for short times.
arXiv Detail & Related papers (2022-10-20T18:00:04Z) - Oracle separations of hybrid quantum-classical circuits [68.96380145211093]
Two models of quantum computation: CQ_d and QC_d.
CQ_d captures the scenario of a d-depth quantum computer many times; QC_d is more analogous to measurement-based quantum computation.
We show that, despite the similarities between CQ_d and QC_d, the two models are intrinsically, i.e. CQ_d $nsubseteq$ QC_d and QC_d $nsubseteq$ CQ_d relative to an oracle.
arXiv Detail & Related papers (2022-01-06T03:10:53Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Computational power of one- and two-dimensional dual-unitary quantum
circuits [0.6946929968559495]
Quantum circuits that are classically simulatable tell us when quantum computation becomes less powerful than or equivalent to classical computation.
We make use of dual-unitary quantum circuits (DUQCs), which have been recently investigated as exactly solvable models of non-equilibrium physics.
arXiv Detail & Related papers (2021-03-16T17:37:11Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Solver of Contracted Eigenvalue Equations for Scalable Molecular
Simulations on Quantum Computing Devices [0.0]
We introduce a quantum solver of contracted eigenvalue equations, the quantum analogue of classical methods for the energies.
We demonstrate the algorithm though computations on both a quantum simulator and two IBM quantum processing units.
arXiv Detail & Related papers (2020-04-23T18:35:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.