論文の概要: GRNN:Recurrent Neural Network based on Ghost Features for Video Super-Resolution
- arxiv url: http://arxiv.org/abs/2505.10577v1
- Date: Wed, 14 May 2025 00:38:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-19 14:36:13.169216
- Title: GRNN:Recurrent Neural Network based on Ghost Features for Video Super-Resolution
- Title(参考訳): GRNN:ビデオスーパーリゾリューションのためのゴースト特徴に基づくリカレントニューラルネットワーク
- Authors: Yutong Guo,
- Abstract要約: 我々は,VSRモデルにおける多くの特徴が互いに類似していることを実験的に観察し,この冗長性を低減するために「ゴースト特徴」を用いることを提案する。
また、従来のリカレント畳み込みネットワーク(RNN)モデルによって生じるいわゆる「段階的消失」現象を解析する。
- 参考スコア(独自算出の注目度): 0.087024326813104
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern video super-resolution (VSR) systems based on convolutional neural networks (CNNs) require huge computational costs. The problem of feature redundancy is present in most models in many domains, but is rarely discussed in VSR. We experimentally observe that many features in VSR models are also similar to each other, so we propose to use "Ghost features" to reduce this redundancy. We also analyze the so-called "gradient disappearance" phenomenon generated by the conventional recurrent convolutional network (RNN) model, and combine the Ghost module with RNN to complete the modeling on time series. The current frame is used as input to the model together with the next frame, the output of the previous frame and the hidden state. Extensive experiments on several benchmark models and datasets show that the PSNR and SSIM of our proposed modality are improved to some extent. Some texture details in the video are also better preserved.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)に基づく最新のビデオ超解像(VSR)システムは、膨大な計算コストを必要とする。
特徴冗長性の問題は、多くの領域のほとんどのモデルに存在しているが、VSRではほとんど議論されていない。
我々は,VSRモデルにおける多くの特徴が互いに類似していることを実験的に観察し,この冗長性を低減するために「ゴースト特徴」を用いることを提案する。
また、従来のリカレント畳み込みネットワーク(RNN)モデルによって生じるいわゆる「段階的消失」現象を分析し、GhostモジュールとRNNを組み合わせて時系列でモデリングを完了する。
現在のフレームは、次のフレーム、前のフレームの出力、隠された状態と共にモデルへの入力として使用される。
いくつかのベンチマークモデルとデータセットの大規模な実験により、提案したモダリティのPSNRとSSIMがある程度改善されていることが示された。
ビデオのテクスチャの詳細もよく保存されている。
関連論文リスト
- Adaptive Convolutional Neural Network for Image Super-resolution [43.06377001247278]
画像超解像のための適応畳み込みニューラルネットワーク(ADSRNet)を提案する。
上層ネットワークは、コンテキスト情報、カーネルマッピングの健全な情報関係、浅い層と深い層の関連性を高めることができる。
下位のネットワークは対称アーキテクチャを使用して、異なるレイヤの関係を強化し、より構造的な情報をマイニングする。
論文 参考訳(メタデータ) (2024-02-24T03:44:06Z) - MS-RNN: A Flexible Multi-Scale Framework for Spatiotemporal Predictive
Learning [7.311071760653835]
予測学習のための最近のRNNモデルを強化するために,Multi-Scale RNN (MS-RNN) という汎用フレームワークを提案する。
我々はMS-RNNフレームワークを理論解析と徹底的な実験により検証する。
その結果、我々のフレームワークを組み込んだRNNモデルは、メモリコストが大幅に削減されるが、以前よりも性能が向上していることがわかった。
論文 参考訳(メタデータ) (2022-06-07T04:57:58Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
本稿では、離散コサイン変換(dct)領域の係数に応じて入力を複数の部分に分割する新しい周波数認識動的ネットワークについて検討する。
実際、高周波部は高価な操作で処理され、低周波部は計算負荷を軽減するために安価な操作が割り当てられる。
ベンチマークSISRモデルおよびデータセット上での実験は、周波数認識動的ネットワークが様々なSISRニューラルネットワークに使用できることを示している。
論文 参考訳(メタデータ) (2021-03-15T12:54:26Z) - GhostSR: Learning Ghost Features for Efficient Image Super-Resolution [49.393251361038025]
畳み込みニューラルネットワーク(CNN)に基づく単一の画像スーパーリゾリューション(SISR)システムは、膨大な計算コストを必要としながら派手なパフォーマンスを実現します。
SISRモデルの冗長な特徴(すなわちゴースト特徴)を生成するためにシフト演算を用いることを提案する。
提案モジュールに埋め込まれた非コンパクトかつ軽量なSISRモデルの両方が,ベースラインと同等の性能を発揮することを示す。
論文 参考訳(メタデータ) (2021-01-21T10:09:47Z) - Recurrent Graph Tensor Networks: A Low-Complexity Framework for
Modelling High-Dimensional Multi-Way Sequence [24.594587557319837]
我々は、リカレントニューラルネットワーク(RNN)における隠れ状態のモデリングを近似するグラフフィルタフレームワークを開発する。
提案するフレームワークは、複数のマルチウェイシーケンスモデリングタスクを通じて検証され、従来のRNNに対してベンチマークされる。
提案したRGTNは,標準RNNよりも優れるだけでなく,従来のRNNと関連する次元の曲線を緩和できることを示す。
論文 参考訳(メタデータ) (2020-09-18T10:13:36Z) - Accurate and Lightweight Image Super-Resolution with Model-Guided Deep
Unfolding Network [63.69237156340457]
我々は、モデル誘導深部展開ネットワーク(MoG-DUN)と呼ばれるSISRに対する説明可能なアプローチを提示し、提唱する。
MoG-DUNは正確(エイリアスを少なくする)、計算効率(モデルパラメータを減らした)、多用途(多重劣化を処理できる)である。
RCAN, SRDNF, SRFBNを含む既存の最先端画像手法に対するMoG-DUN手法の優位性は、いくつかの一般的なデータセットと様々な劣化シナリオに関する広範な実験によって実証されている。
論文 参考訳(メタデータ) (2020-09-14T08:23:37Z) - iSeeBetter: Spatio-temporal video super-resolution using recurrent
generative back-projection networks [0.0]
ビデオ超解像(VSR)に対する新しいGANに基づく構造時間的アプローチiSeeBetterを提案する。
iSeeBetterは、リカレントバックプロジェクションネットワークをジェネレータとして使用して、現在のフレームと隣接するフレームから時空間情報を抽出する。
以上の結果から,iSeeBetterはVSRの忠実度に優れ,最先端の性能に勝ることを示した。
論文 参考訳(メタデータ) (2020-06-13T01:36:30Z) - Iterative Network for Image Super-Resolution [69.07361550998318]
単一画像超解像(SISR)は、最近の畳み込みニューラルネットワーク(CNN)の発展により、大幅に活性化されている。
本稿では、従来のSISRアルゴリズムに関する新たな知見を提供し、反復最適化に依存するアプローチを提案する。
反復最適化の上に,新しい反復型超解像ネットワーク (ISRN) を提案する。
論文 参考訳(メタデータ) (2020-05-20T11:11:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。