SRMamba: Mamba for Super-Resolution of LiDAR Point Clouds
- URL: http://arxiv.org/abs/2505.10601v1
- Date: Thu, 15 May 2025 14:41:35 GMT
- Title: SRMamba: Mamba for Super-Resolution of LiDAR Point Clouds
- Authors: Chuang Chen, Wenyi Ge,
- Abstract summary: We propose spatialamba, a novel method for super-resolution of LiDAR point clouds in sparse scenes.<n>Specifically, we implement projection technique based on Hough Voting and Hole Compensation strategy to eliminate horizontally linear holes in range image.<n>An asymmetric U-Net network adapts to the input characteristics of LiDARs with different beam counts, enabling super-resolution reconstruction for multi-beam point clouds.
- Score: 1.2277343096128712
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, range-view-based LiDAR point cloud super-resolution techniques attract significant attention as a low-cost method for generating higher-resolution point cloud data. However, due to the sparsity and irregular structure of LiDAR point clouds, the point cloud super-resolution problem remains a challenging topic, especially for point cloud upsampling under novel views. In this paper, we propose SRMamba, a novel method for super-resolution of LiDAR point clouds in sparse scenes, addressing the key challenge of recovering the 3D spatial structure of point clouds from novel views. Specifically, we implement projection technique based on Hough Voting and Hole Compensation strategy to eliminate horizontally linear holes in range image. To improve the establishment of long-distance dependencies and to focus on potential geometric features in vertical 3D space, we employ Visual State Space model and Multi-Directional Scanning mechanism to mitigate the loss of 3D spatial structural information due to the range image. Additionally, an asymmetric U-Net network adapts to the input characteristics of LiDARs with different beam counts, enabling super-resolution reconstruction for multi-beam point clouds. We conduct a series of experiments on multiple challenging public LiDAR datasets (SemanticKITTI and nuScenes), and SRMamba demonstrates significant superiority over other algorithms in both qualitative and quantitative evaluations.
Related papers
- DG-MVP: 3D Domain Generalization via Multiple Views of Point Clouds for Classification [10.744510913722817]
Deep neural networks have achieved significant success in 3D point cloud classification.<n>In this paper, we focus on the 3D point cloud domain generalization problem.<n>We propose a novel method for 3D point cloud domain generalization, which can generalize to unseen domains of point clouds.
arXiv Detail & Related papers (2025-04-16T19:43:32Z) - LPRnet: A self-supervised registration network for LiDAR and photogrammetric point clouds [38.42527849407057]
LiDAR and photogrammetry are active and passive remote sensing techniques for point cloud acquisition, respectively.<n>Due to the fundamental differences in sensing mechanisms, spatial distributions and coordinate systems, their point clouds exhibit significant discrepancies in density, precision, noise, and overlap.<n>This paper proposes a self-supervised registration network based on a masked autoencoder, focusing on heterogeneous LiDAR and photogrammetric point clouds.
arXiv Detail & Related papers (2025-01-10T02:36:37Z) - TULIP: Transformer for Upsampling of LiDAR Point Clouds [32.77657816997911]
LiDAR Up is a challenging task for the perception systems of robots and autonomous vehicles.
Recent works propose to solve this problem by converting LiDAR data from 3D Euclidean space into an image super-resolution problem in 2D image space.
We propose T geometries, a new method to reconstruct high-resolution LiDAR point clouds from low-resolution LiDAR input.
arXiv Detail & Related papers (2023-12-11T10:43:28Z) - StarNet: Style-Aware 3D Point Cloud Generation [82.30389817015877]
StarNet is able to reconstruct and generate high-fidelity and even 3D point clouds using a mapping network.
Our framework achieves comparable state-of-the-art performance on various metrics in the point cloud reconstruction and generation tasks.
arXiv Detail & Related papers (2023-03-28T08:21:44Z) - IDEA-Net: Dynamic 3D Point Cloud Interpolation via Deep Embedding
Alignment [58.8330387551499]
We formulate the problem as estimation of point-wise trajectories (i.e., smooth curves)
We propose IDEA-Net, an end-to-end deep learning framework, which disentangles the problem under the assistance of the explicitly learned temporal consistency.
We demonstrate the effectiveness of our method on various point cloud sequences and observe large improvement over state-of-the-art methods both quantitatively and visually.
arXiv Detail & Related papers (2022-03-22T10:14:08Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
Point cloud completion refers to completing 3D shapes from partial 3D point clouds.
We propose a novel neural network for processing point cloud in a per-point manner to eliminate kNNs.
The proposed framework, namely PointAttN, is simple, neat and effective, which can precisely capture the structural information of 3D shapes.
arXiv Detail & Related papers (2022-03-16T09:20:01Z) - R-AGNO-RPN: A LIDAR-Camera Region Deep Network for Resolution-Agnostic
Detection [3.4761212729163313]
R-AGNO-RPN, a region proposal network built on fusion of 3D point clouds and RGB images is proposed.
Our approach is designed to be also applied on low point cloud resolutions.
arXiv Detail & Related papers (2020-12-10T15:22:58Z) - Pseudo-LiDAR Point Cloud Interpolation Based on 3D Motion Representation
and Spatial Supervision [68.35777836993212]
We propose a Pseudo-LiDAR point cloud network to generate temporally and spatially high-quality point cloud sequences.
By exploiting the scene flow between point clouds, the proposed network is able to learn a more accurate representation of the 3D spatial motion relationship.
arXiv Detail & Related papers (2020-06-20T03:11:04Z) - GRNet: Gridding Residual Network for Dense Point Cloud Completion [54.43648460932248]
Estimating the complete 3D point cloud from an incomplete one is a key problem in many vision and robotics applications.
We propose a novel Gridding Residual Network (GRNet) for point cloud completion.
Experimental results indicate that the proposed GRNet performs favorably against state-of-the-art methods on the ShapeNet, Completion3D, and KITTI benchmarks.
arXiv Detail & Related papers (2020-06-06T02:46:39Z) - Reconfigurable Voxels: A New Representation for LiDAR-Based Point Clouds [76.52448276587707]
We propose Reconfigurable Voxels, a new approach to constructing representations from 3D point clouds.
Specifically, we devise a biased random walk scheme, which adaptively covers each neighborhood with a fixed number of voxels.
We find that this approach effectively improves the stability of voxel features, especially for sparse regions.
arXiv Detail & Related papers (2020-04-06T15:07:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.