An Exponential Averaging Process with Strong Convergence Properties
- URL: http://arxiv.org/abs/2505.10605v1
- Date: Thu, 15 May 2025 16:19:58 GMT
- Title: An Exponential Averaging Process with Strong Convergence Properties
- Authors: Frederik Köhne, Anton Schiela,
- Abstract summary: In certain scenarios, observations made along trajectories of random dynamical systems are of particular interest.<n>One popular smoothing technique for such a scenario is exponential moving averaging (EMA), which assigns observations a weight that decreases exponentially in their age.<n>However, EMA fails to enjoy strong convergence properties, which stems from the fact that the weight assigned to the youngest observation is constant over time.<n>We consider an adaptation to EMA, which we call $p$-EMA, where the weights assigned to the last decrease to zero at a subharmonic rate.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Averaging, or smoothing, is a fundamental approach to obtain stable, de-noised estimates from noisy observations. In certain scenarios, observations made along trajectories of random dynamical systems are of particular interest. One popular smoothing technique for such a scenario is exponential moving averaging (EMA), which assigns observations a weight that decreases exponentially in their age, thus giving younger observations a larger weight. However, EMA fails to enjoy strong stochastic convergence properties, which stems from the fact that the weight assigned to the youngest observation is constant over time, preventing the noise in the averaged quantity from decreasing to zero. In this work, we consider an adaptation to EMA, which we call $p$-EMA, where the weights assigned to the last observations decrease to zero at a subharmonic rate. We provide stochastic convergence guarantees for this kind of averaging under mild assumptions on the autocorrelations of the underlying random dynamical system. We further discuss the implications of our results for a recently introduced adaptive step size control for Stochastic Gradient Descent (SGD), which uses $p$-EMA for averaging noisy observations.
Related papers
- Exponential Moving Average of Weights in Deep Learning: Dynamics and Benefits [11.801688624472009]
We present a systematic study of the Exponential Moving Average (EMA) of weights.<n>We show that EMA solutions differ from last-iterate solutions.<n>We suggest that an EMA of weights is a simple yet effective plug-in to improve the performance of deep learning models.
arXiv Detail & Related papers (2024-11-27T19:14:27Z) - Stochastic Localization via Iterative Posterior Sampling [2.1383136715042417]
We consider a general localization framework and introduce an explicit class of observation processes, associated with flexible denoising schedules.
We provide a complete methodology, $textitStochastic localization via Iterative Posterior Sampling$ (SLIPS), to obtain approximate samples of this dynamics, and as a byproduct, samples from the target distribution.
We illustrate the benefits and applicability of SLIPS on several benchmarks of multi-modal distributions, including mixtures in increasing dimensions, logistic regression and high-dimensional field system from statistical-mechanics.
arXiv Detail & Related papers (2024-02-16T15:28:41Z) - Breaking the Heavy-Tailed Noise Barrier in Stochastic Optimization Problems [56.86067111855056]
We consider clipped optimization problems with heavy-tailed noise with structured density.
We show that it is possible to get faster rates of convergence than $mathcalO(K-(alpha - 1)/alpha)$, when the gradients have finite moments of order.
We prove that the resulting estimates have negligible bias and controllable variance.
arXiv Detail & Related papers (2023-11-07T17:39:17Z) - Butterfly Effects of SGD Noise: Error Amplification in Behavior Cloning
and Autoregression [70.78523583702209]
We study training instabilities of behavior cloning with deep neural networks.
We observe that minibatch SGD updates to the policy network during training result in sharp oscillations in long-horizon rewards.
arXiv Detail & Related papers (2023-10-17T17:39:40Z) - Losing momentum in continuous-time stochastic optimisation [42.617042045455506]
momentum-based optimisation algorithms have become particularly widespread.
In this work, we analyse a continuous-time model for gradient descent with momentum.
We also train a convolutional neural network in an image classification problem.
arXiv Detail & Related papers (2022-09-08T10:46:05Z) - Clipped Stochastic Methods for Variational Inequalities with
Heavy-Tailed Noise [64.85879194013407]
We prove the first high-probability results with logarithmic dependence on the confidence level for methods for solving monotone and structured non-monotone VIPs.
Our results match the best-known ones in the light-tails case and are novel for structured non-monotone problems.
In addition, we numerically validate that the gradient noise of many practical formulations is heavy-tailed and show that clipping improves the performance of SEG/SGDA.
arXiv Detail & Related papers (2022-06-02T15:21:55Z) - The effective noise of Stochastic Gradient Descent [9.645196221785694]
Gradient Descent (SGD) is the workhorse algorithm of deep learning technology.
We characterize the parameters of SGD and a recently-introduced variant, persistent SGD, in a neural network model.
We find that noisier algorithms lead to wider decision boundaries of the corresponding constraint satisfaction problem.
arXiv Detail & Related papers (2021-12-20T20:46:19Z) - Stochastic Optimization under Distributional Drift [3.0229888038442922]
We provide non-asymptotic convergence guarantees for algorithms with iterate averaging, focusing on bounds valid both in expectation and with high probability.
We identify a low drift-to-noise regime in which the tracking efficiency of the gradient method benefits significantly from a step decay schedule.
arXiv Detail & Related papers (2021-08-16T21:57:39Z) - On the Convergence of Stochastic Extragradient for Bilinear Games with
Restarted Iteration Averaging [96.13485146617322]
We present an analysis of the ExtraGradient (SEG) method with constant step size, and present variations of the method that yield favorable convergence.
We prove that when augmented with averaging, SEG provably converges to the Nash equilibrium, and such a rate is provably accelerated by incorporating a scheduled restarting procedure.
arXiv Detail & Related papers (2021-06-30T17:51:36Z) - Positive-Negative Momentum: Manipulating Stochastic Gradient Noise to
Improve Generalization [89.7882166459412]
gradient noise (SGN) acts as implicit regularization for deep learning.
Some works attempted to artificially simulate SGN by injecting random noise to improve deep learning.
For simulating SGN at low computational costs and without changing the learning rate or batch size, we propose the Positive-Negative Momentum (PNM) approach.
arXiv Detail & Related papers (2021-03-31T16:08:06Z) - Noise and Fluctuation of Finite Learning Rate Stochastic Gradient
Descent [3.0079490585515343]
gradient descent (SGD) is relatively well understood in the vanishing learning rate regime.
We propose to study the basic properties of SGD and its variants in the non-vanishing learning rate regime.
arXiv Detail & Related papers (2020-12-07T12:31:43Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - ROOT-SGD: Sharp Nonasymptotics and Near-Optimal Asymptotics in a Single Algorithm [71.13558000599839]
We study the problem of solving strongly convex and smooth unconstrained optimization problems using first-order algorithms.
We devise a novel, referred to as Recursive One-Over-T SGD, based on an easily implementable, averaging of past gradients.
We prove that it simultaneously achieves state-of-the-art performance in both a finite-sample, nonasymptotic sense and an sense.
arXiv Detail & Related papers (2020-08-28T14:46:56Z) - A New Accelerated Stochastic Gradient Method with Momentum [4.967897656554012]
gradient descent with momentum (Sgdm) use weights that decay exponentially with the iteration times to generate an momentum term.
We provide theoretical convergence properties analyses for our method, which show both the exponentially decay weights and our inverse proportionally decay weights can limit the variance of the moving direction of parameters to be optimized to a region.
arXiv Detail & Related papers (2020-05-31T03:04:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.