MMLongBench: Benchmarking Long-Context Vision-Language Models Effectively and Thoroughly
- URL: http://arxiv.org/abs/2505.10610v2
- Date: Mon, 26 May 2025 21:29:07 GMT
- Title: MMLongBench: Benchmarking Long-Context Vision-Language Models Effectively and Thoroughly
- Authors: Zhaowei Wang, Wenhao Yu, Xiyu Ren, Jipeng Zhang, Yu Zhao, Rohit Saxena, Liang Cheng, Ginny Wong, Simon See, Pasquale Minervini, Yangqiu Song, Mark Steedman,
- Abstract summary: Long-context vision-language models (LCVLMs) are capable of handling hundreds of images with interleaved text tokens in a single forward pass.<n> MMLongBench is the first benchmark covering a diverse set of long-context vision-language tasks.
- Score: 55.14191042936519
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The rapid extension of context windows in large vision-language models has given rise to long-context vision-language models (LCVLMs), which are capable of handling hundreds of images with interleaved text tokens in a single forward pass. In this work, we introduce MMLongBench, the first benchmark covering a diverse set of long-context vision-language tasks, to evaluate LCVLMs effectively and thoroughly. MMLongBench is composed of 13,331 examples spanning five different categories of downstream tasks, such as Visual RAG and Many-Shot ICL. It also provides broad coverage of image types, including various natural and synthetic images. To assess the robustness of the models to different input lengths, all examples are delivered at five standardized input lengths (8K-128K tokens) via a cross-modal tokenization scheme that combines vision patches and text tokens. Through a thorough benchmarking of 46 closed-source and open-source LCVLMs, we provide a comprehensive analysis of the current models' vision-language long-context ability. Our results show that: i) performance on a single task is a weak proxy for overall long-context capability; ii) both closed-source and open-source models face challenges in long-context vision-language tasks, indicating substantial room for future improvement; iii) models with stronger reasoning ability tend to exhibit better long-context performance. By offering wide task coverage, various image types, and rigorous length control, MMLongBench provides the missing foundation for diagnosing and advancing the next generation of LCVLMs.
Related papers
- From 128K to 4M: Efficient Training of Ultra-Long Context Large Language Models [54.44375226381814]
Long-context capabilities are essential for a wide range of applications, including document and video understanding, in-context learning, and inference-time scaling.<n>We introduce a efficient training recipe for building ultra-long context LLMs from aligned instruct model, pushing the boundaries of context lengths from 128K to 1M, 2M, and 4M tokens.<n>Our approach achieves state-of-the-art performance across a diverse set of long-context benchmarks.
arXiv Detail & Related papers (2025-04-08T16:58:58Z) - Long-VITA: Scaling Large Multi-modal Models to 1 Million Tokens with Leading Short-Context Accuracy [111.1291107651131]
Long-VITA is a large multi-modal model for long-context visual-language understanding tasks.<n>It is adept at concurrently processing and analyzing modalities of image, video, and text over 4K frames or 1M tokens.<n>Long-VITA is fully reproducible and supports both NPU and GPU platforms for training and testing.
arXiv Detail & Related papers (2025-02-07T18:59:56Z) - Leave No Document Behind: Benchmarking Long-Context LLMs with Extended Multi-Doc QA [71.04146366608904]
Long-context modeling capabilities have garnered widespread attention, leading to the emergence of Large Language Models (LLMs) with ultra-context windows.
We propose a novel long-context benchmark, Loong, aligning with realistic scenarios through extended multi-document question answering (QA)
Loong introduces four types of tasks with a range of context lengths: Spotlight Locating, Comparison, Clustering, and Chain of Reasoning.
arXiv Detail & Related papers (2024-06-25T09:42:56Z) - Leveraging Visual Tokens for Extended Text Contexts in Multi-Modal Learning [68.43706033424378]
This study introduces an innovative method designed to increase in-context text length in large language models (MLLMs) efficiently.
We present Visualized In-Context Text Processing (VisInContext), which processes long in-context text using visual tokens.
This technique significantly reduces GPU memory usage and floating point operations (FLOPs) for both training and inferenceing stage.
arXiv Detail & Related papers (2024-06-04T17:59:25Z) - BAMBOO: A Comprehensive Benchmark for Evaluating Long Text Modeling Capacities of Large Language Models [141.21603469555225]
Large language models (LLMs) have achieved dramatic proficiency over NLP tasks with normal length.
We propose BAMBOO, a multi-task long context benchmark.
It consists of 10 datasets from 5 different long text understanding tasks.
arXiv Detail & Related papers (2023-09-23T11:36:15Z) - L-Eval: Instituting Standardized Evaluation for Long Context Language
Models [91.05820785008527]
We propose L-Eval to institute a more standardized evaluation for long context language models (LCLMs)
We build a new evaluation suite containing 20 sub-tasks, 508 long documents, and over 2,000 human-labeled query-response pairs.
Results show that popular n-gram matching metrics generally can not correlate well with human judgment.
arXiv Detail & Related papers (2023-07-20T17:59:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.