BAMBOO: A Comprehensive Benchmark for Evaluating Long Text Modeling Capacities of Large Language Models
- URL: http://arxiv.org/abs/2309.13345v3
- Date: Tue, 19 Mar 2024 09:00:32 GMT
- Title: BAMBOO: A Comprehensive Benchmark for Evaluating Long Text Modeling Capacities of Large Language Models
- Authors: Zican Dong, Tianyi Tang, Junyi Li, Wayne Xin Zhao, Ji-Rong Wen,
- Abstract summary: Large language models (LLMs) have achieved dramatic proficiency over NLP tasks with normal length.
We propose BAMBOO, a multi-task long context benchmark.
It consists of 10 datasets from 5 different long text understanding tasks.
- Score: 141.21603469555225
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have achieved dramatic proficiency over NLP tasks with normal length. Recently, multiple studies have committed to extending the context length and enhancing the long text modeling capabilities of LLMs. To comprehensively evaluate the long context ability of LLMs, we propose BAMBOO, a multi-task long context benchmark. BAMBOO has been designed with four principles: comprehensive capacity evaluation, avoidance of data contamination, accurate automatic evaluation, and different length levels. It consists of 10 datasets from 5 different long text understanding tasks, i.e. question answering, hallucination detection, text sorting, language modeling, and code completion, to cover core capacities and various domains of LLMs. We conduct experiments with five long context models on BAMBOO and further discuss four key research questions of long text. We also qualitatively analyze current long context models and point out future directions for enhancing long text modeling capacities. We release our data, prompts, and code at https://github.com/RUCAIBox/BAMBOO.
Related papers
- NeedleBench: Can LLMs Do Retrieval and Reasoning in 1 Million Context Window? [37.64593022203498]
NeedleBench is a framework consisting of progressively more challenging tasks for assessing bilingual long-context capabilities.
We use the framework to assess how well the leading open-source models can identify key information relevant to the question.
We propose the Ancestral Trace Challenge to mimic the complexity of logical reasoning challenges that are likely to be present in real-world long-context tasks.
arXiv Detail & Related papers (2024-07-16T17:59:06Z) - Leave No Document Behind: Benchmarking Long-Context LLMs with Extended Multi-Doc QA [71.04146366608904]
Long-context modeling capabilities have garnered widespread attention, leading to the emergence of Large Language Models (LLMs) with ultra-context windows.
We propose a novel long-context benchmark, Loong, aligning with realistic scenarios through extended multi-document question answering (QA)
Loong introduces four types of tasks with a range of context lengths: Spotlight Locating, Comparison, Clustering, and Chain of Reasoning.
arXiv Detail & Related papers (2024-06-25T09:42:56Z) - Ada-LEval: Evaluating long-context LLMs with length-adaptable benchmarks [76.43527940649939]
We introduce Ada-LEval, a benchmark for evaluating the long-context understanding of large language models (LLMs)
Ada-LEval includes two challenging subsets, TSort and BestAnswer, which enable a more reliable evaluation of LLMs' long context capabilities.
We evaluate 4 state-of-the-art closed-source API models and 6 open-source models with Ada-LEval.
arXiv Detail & Related papers (2024-04-09T17:30:48Z) - XL$^2$Bench: A Benchmark for Extremely Long Context Understanding with Long-range Dependencies [45.31042312867939]
Large Language Models (LLMs) have demonstrated remarkable performance across diverse tasks but are constrained by their small context window sizes.
Various efforts have been proposed to expand the context window to accommodate even up to 200K input tokens.
We introduce a benchmark for extremely long context understanding with long-range dependencies, XL$2$Bench.
arXiv Detail & Related papers (2024-04-08T12:29:07Z) - LongWanjuan: Towards Systematic Measurement for Long Text Quality [102.46517202896521]
LongWanjuan is a dataset specifically tailored to enhance the training of language models for long-text tasks with over 160B tokens.
In LongWanjuan, we categorize long texts into holistic, aggregated, and chaotic types, enabling a detailed analysis of long-text quality.
We devise a data mixture recipe that strategically balances different types of long texts within LongWanjuan, leading to significant improvements in model performance on long-text tasks.
arXiv Detail & Related papers (2024-02-21T07:27:18Z) - LongBench: A Bilingual, Multitask Benchmark for Long Context Understanding [58.20031627237889]
LongBench is the first bilingual, multi-task benchmark for long context understanding.
It comprises 21 datasets across 6 task categories in both English and Chinese, with an average length of 6,711 words (English) and 13,386 characters (Chinese)
arXiv Detail & Related papers (2023-08-28T11:53:40Z) - L-Eval: Instituting Standardized Evaluation for Long Context Language
Models [91.05820785008527]
We propose L-Eval to institute a more standardized evaluation for long context language models (LCLMs)
We build a new evaluation suite containing 20 sub-tasks, 508 long documents, and over 2,000 human-labeled query-response pairs.
Results show that popular n-gram matching metrics generally can not correlate well with human judgment.
arXiv Detail & Related papers (2023-07-20T17:59:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.