Temporal coherence of single photons emitted by hexagonal Boron Nitride defects at room temperature
- URL: http://arxiv.org/abs/2505.10644v1
- Date: Thu, 15 May 2025 18:32:29 GMT
- Title: Temporal coherence of single photons emitted by hexagonal Boron Nitride defects at room temperature
- Authors: J. -V. Vidal Martínez-Pons, S. -K. Kim, M. Behrens, A. Izquierdo-Molina, A. Menendez Rua, S. Paçal, S. Ateş, L. Viña, C. Antón-Solanas,
- Abstract summary: Color centers in hexagonal boron nitride (hBN) emerge as promising quantum light sources at room temperature.<n>We report the coherence time of the single photons emitted by an hBN defect in a nanocrystal at room temperature, measured via Michelson interferometry.<n>Results highlight the presence of a strong phonon-electron coupling, suggesting the need to work at cryogenic temperatures to enable quantum photonic applications based on photon interference.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Color centers in hexagonal boron nitride (hBN) emerge as promising quantum light sources at room temperature, with potential applications in quantum communications, among others. The temporal coherence of emitted photons (i.e. their capacity to interfere and distribute photonic entanglement) is essential for many of these applications. Hence, it is crucial to study and determine the temporal coherence of this emission under different experimental conditions. In this work, we report the coherence time of the single photons emitted by an hBN defect in a nanocrystal at room temperature, measured via Michelson interferometry. The visibility of this interference vanishes when the temporal delay between the interferometer arms is a few hundred femtoseconds, highlighting that the phonon dephasing processes are four orders of magnitude faster than the spontaneous decay time of the emitter. We also analyze the single photon characteristics of the emission via correlation measurements, defect blinking dynamics, and its Debye-Waller factor. Our room temperature results highlight the presence of a strong phonon-electron coupling, suggesting the need to work at cryogenic temperatures to enable quantum photonic applications based on photon interference.
Related papers
- Extraction of coherence times of biexciton and exciton photons emitted by a single resonantly excited quantum dot under controlled dephasing [38.642211380100925]
We study the temperature-dependent two-photon interference visibility of the biexciton and exciton photons emitted from a single quantum dot under two-photon resonant excitation.
arXiv Detail & Related papers (2025-05-22T16:11:10Z) - Interference of photons from independent hot atoms [0.0]
Coherence of light from elementary atomic emitters plays a paramount role in diverse areas of modern optics.<n>We demonstrate the interference of photons scattered from independent ensembles of warm atoms in atomic vapor.<n> relies on the feasibility of the preservation of coherence of light scattered elastically in the forward and backward directions.
arXiv Detail & Related papers (2024-09-27T11:34:59Z) - Ultrafast phonon-mediated dephasing of color centers in hexagonal boron nitride probed by electron beams [0.45502337445953184]
We study the dynamics of the electron phonon coupling and phonon mediated dephasing of color centers in hexagonal boron nitride.
We demonstrate an ultrafast dephasing time of only 200 fs and a radiative decay of about 585 fs at room temperature.
This behavior is attributed to efficient electron-beam excitation of coherent phonon polaritons in hexagonal boron nitride.
arXiv Detail & Related papers (2024-04-15T15:48:06Z) - Experimental Generation of Spin-Photon Entanglement in Silicon Carbide [9.89461825381694]
We experimentally generate entanglement between a silicon vacancy defect in silicon carbide and a scattered single photon in the zero-phonon line.
Photonic qubit is encoded in the time-bin degree-of-freedom and measured using an unbalanced Mach-Zehnder interferometer.
arXiv Detail & Related papers (2023-11-29T08:52:18Z) - Photophysics of Intrinsic Single-Photon Emitters in Silicon Nitride at
Low Temperatures [97.5153823429076]
A robust process for fabricating intrinsic single-photon emitters in silicon nitride has been recently established.
These emitters show promise for quantum applications due to room-temperature operation and monolithic integration with the technologically mature silicon nitride photonics platform.
arXiv Detail & Related papers (2023-01-25T19:53:56Z) - Direct observation of photon bound states using a single artificial atom [0.45507178426690204]
We report the direct observation of a photon-number-dependent time delay in the scattering off a single semiconductor quantum dot coupled to an optical cavity.
The reduced time delay of the two-photon bound state is a fingerprint of the celebrated example of stimulated emission, where the arrival of two photons within the lifetime of an emitter causes one photon to stimulate the emission of the other from the atom.
arXiv Detail & Related papers (2022-05-06T15:41:59Z) - Phonon dephasing and spectral diffusion of quantum emitters in hexagonal
Boron Nitride [52.915502553459724]
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics.
We study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-25T05:56:18Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Internal Photo Effect from a Single Quantum Emitter [0.5172201569251683]
Internal photo-effect that emits electrons from the dot by an intra-band excitation is studied.
We find a linear dependence of the optically generated emission rate on the intensity excitation.
The results also quantify an important, but mostly neglected, mechanism that may fundamentally limit the coherence times in solid-state quantum optical devices.
arXiv Detail & Related papers (2020-10-21T12:13:07Z) - Mechanical Decoupling of Quantum Emitters in Hexagonal Boron Nitride
from Low-Energy Phonon Modes [52.77024349608834]
Quantum emitters in hexagonal Boron Nitride (hBN) were recently reported to hol a homogeneous linewidth according to the Fourier-Transform limit up to room temperature.
This unusual observation was traced back to decoupling from in-plane phonon modes which can arise if the emitter is located between two planes of the hBN host material.
arXiv Detail & Related papers (2020-04-22T20:00:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.