Predicting Risk of Pulmonary Fibrosis Formation in PASC Patients
- URL: http://arxiv.org/abs/2505.10691v1
- Date: Thu, 15 May 2025 20:30:21 GMT
- Title: Predicting Risk of Pulmonary Fibrosis Formation in PASC Patients
- Authors: Wanying Dou, Gorkem Durak, Koushik Biswas, Ziliang Hong, Andrea Mia Bejar, Elif Keles, Kaan Akin, Sukru Mehmet Erturk, Alpay Medetalibeyoglu, Marc Sala, Alexander Misharin, Hatice Savas, Mary Salvatore, Sachin Jambawalikar, Drew Torigian, Jayaram K. Udupa, Ulas Bagci,
- Abstract summary: Post-Acute Sequelae of COVID-19 (PASC), commonly known as Long COVID, manifests as a diverse array of persistent or newly emerging symptoms.<n>This study introduces a novel multi-center chest CT analysis framework that combines deep learning and radiomics for fibrosis prediction.
- Score: 30.23992107175403
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While the acute phase of the COVID-19 pandemic has subsided, its long-term effects persist through Post-Acute Sequelae of COVID-19 (PASC), commonly known as Long COVID. There remains substantial uncertainty regarding both its duration and optimal management strategies. PASC manifests as a diverse array of persistent or newly emerging symptoms--ranging from fatigue, dyspnea, and neurologic impairments (e.g., brain fog), to cardiovascular, pulmonary, and musculoskeletal abnormalities--that extend beyond the acute infection phase. This heterogeneous presentation poses substantial challenges for clinical assessment, diagnosis, and treatment planning. In this paper, we focus on imaging findings that may suggest fibrotic damage in the lungs, a critical manifestation characterized by scarring of lung tissue, which can potentially affect long-term respiratory function in patients with PASC. This study introduces a novel multi-center chest CT analysis framework that combines deep learning and radiomics for fibrosis prediction. Our approach leverages convolutional neural networks (CNNs) and interpretable feature extraction, achieving 82.2% accuracy and 85.5% AUC in classification tasks. We demonstrate the effectiveness of Grad-CAM visualization and radiomics-based feature analysis in providing clinically relevant insights for PASC-related lung fibrosis prediction. Our findings highlight the potential of deep learning-driven computational methods for early detection and risk assessment of PASC-related lung fibrosis--presented for the first time in the literature.
Related papers
- Statistical and Predictive Analysis to Identify Risk Factors and Effects of Post COVID-19 Syndrome [1.33134751838052]
COVID-19 symptoms can persist for months after infection, leading to what is termed long COVID.<n> Factors such as vaccination timing, patient characteristics, and symptoms during the acute phase of infection may contribute to the prolonged effects and intensity of long COVID.<n>We benchmark and interpret various data-driven approaches, including linear models, random forests, gradient boosting, and neural networks, using data from the Lifelines COVID-19 cohort.<n>Our results show that Neural Networks (NN) achieve the best performance in terms of MAPE, with predictions averaging 19% error.
arXiv Detail & Related papers (2025-04-29T16:34:06Z) - Detecting and clustering swallow events in esophageal long-term high-resolution manometry [48.688209040613216]
We propose a Deep Learning based swallowing detection method to accurately identify swallowing events and secondary non-deglutitive-induced esophageal motility disorders.
We evaluate our computational pipeline on a total of 25 LTHRMs, which were meticulously annotated by medical experts.
arXiv Detail & Related papers (2024-05-02T09:41:31Z) - Penalized Deep Partially Linear Cox Models with Application to CT Scans
of Lung Cancer Patients [42.09584755334577]
Lung cancer is a leading cause of cancer mortality globally, highlighting the importance of understanding its mortality risks to design effective therapies.
The National Lung Screening Trial (NLST) employed computed tomography texture analysis to quantify the mortality risks of lung cancer patients.
We propose a novel Penalized Deep Partially Linear Cox Model (Penalized DPLC), which incorporates the SCAD penalty to select important texture features and employs a deep neural network to estimate the nonparametric component of the model.
arXiv Detail & Related papers (2023-03-09T15:38:16Z) - Survival Analysis for Idiopathic Pulmonary Fibrosis using CT Images and
Incomplete Clinical Data [17.162038700963418]
Idiopathic Pulmonary Fibrosis (IPF) is an inexorably progressive fibrotic lung disease with a variable and unpredictable rate of progression.
CT scans of the lungs inform clinical assessment of IPF patients and contain pertinent information related to disease progression.
We propose a multi-modal method that uses neural networks and memory banks to predict the survival of IPF patients using clinical and imaging data.
arXiv Detail & Related papers (2022-03-21T23:48:47Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
We adopted an approach based on using an ensemble of deep convolutionalneural networks for segmentation of lung CT scans.
Using our models we are able to segment the lesions, evaluatepatients dynamics, estimate relative volume of lungs affected by lesions and evaluate the lung damage stage.
arXiv Detail & Related papers (2021-05-25T12:06:55Z) - Longitudinal Quantitative Assessment of COVID-19 Infection Progression
from Chest CTs [36.71379097297172]
We propose a new framework to identify infection at a voxel level and visualize the progression of COVID-19.
In particular, we devise a longitudinal segmentation network that utilizes the reference scan information to improve the performance of disease identification.
arXiv Detail & Related papers (2021-03-12T12:35:11Z) - Fibrosis-Net: A Tailored Deep Convolutional Neural Network Design for
Prediction of Pulmonary Fibrosis Progression from Chest CT Images [59.622239796473885]
Pulmonary fibrosis is a chronic lung disease that causes irreparable lung tissue scarring and damage, resulting in progressive loss in lung capacity and no known cure.
We introduce Fibrosis-Net, a deep convolutional neural network design tailored for the prediction of pulmonary fibrosis progression from chest CT images.
arXiv Detail & Related papers (2021-03-06T02:16:41Z) - M3Lung-Sys: A Deep Learning System for Multi-Class Lung Pneumonia
Screening from CT Imaging [85.00066186644466]
We propose a Multi-task Multi-slice Deep Learning System (M3Lung-Sys) for multi-class lung pneumonia screening from CT imaging.
In addition to distinguish COVID-19 from Healthy, H1N1, and CAP cases, our M 3 Lung-Sys also be able to locate the areas of relevant lesions.
arXiv Detail & Related papers (2020-10-07T06:22:24Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
We combine radiomics of lung opacities and non-imaging features from demographic data, vital signs, and laboratory findings to predict need for intensive care unit admission.
Our methods may also be applied to other lung diseases including but not limited to community acquired pneumonia.
arXiv Detail & Related papers (2020-07-20T19:08:50Z) - Diagnosis of Coronavirus Disease 2019 (COVID-19) with Structured Latent
Multi-View Representation Learning [48.05232274463484]
Recently, the outbreak of Coronavirus Disease 2019 (COVID-19) has spread rapidly across the world.
Due to the large number of affected patients and heavy labor for doctors, computer-aided diagnosis with machine learning algorithm is urgently needed.
In this study, we propose to conduct the diagnosis of COVID-19 with a series of features extracted from CT images.
arXiv Detail & Related papers (2020-05-06T15:19:15Z) - AI-Driven CT-based quantification, staging and short-term outcome
prediction of COVID-19 pneumonia [3.672093204122992]
Chest computed tomography (CT) is widely used for the management of Coronavirus disease 2019 (COVID-19) pneumonia.
CT has a prognostic role by allowing visually evaluating the extent of COVID-19 lung abnormalities.
arXiv Detail & Related papers (2020-04-20T12:24:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.