GeoGrid-Bench: Can Foundation Models Understand Multimodal Gridded Geo-Spatial Data?
- URL: http://arxiv.org/abs/2505.10714v2
- Date: Sat, 24 May 2025 02:36:09 GMT
- Title: GeoGrid-Bench: Can Foundation Models Understand Multimodal Gridded Geo-Spatial Data?
- Authors: Bowen Jiang, Yangxinyu Xie, Xiaomeng Wang, Jiashu He, Joshua Bergerson, John K Hutchison, Jordan Branham, Camillo J Taylor, Tanwi Mallick,
- Abstract summary: GeoGrid-Bench is a benchmark designed to evaluate the ability of foundation models to understand geo-spatial data in the grid structure.<n>This benchmark features large-scale, real-world data covering 16 climate variables across 150 locations and extended time frames.
- Score: 5.017671236021897
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present GeoGrid-Bench, a benchmark designed to evaluate the ability of foundation models to understand geo-spatial data in the grid structure. Geo-spatial datasets pose distinct challenges due to their dense numerical values, strong spatial and temporal dependencies, and unique multimodal representations including tabular data, heatmaps, and geographic visualizations. To assess how foundation models can support scientific research in this domain, GeoGrid-Bench features large-scale, real-world data covering 16 climate variables across 150 locations and extended time frames. The benchmark includes approximately 3,200 question-answer pairs, systematically generated from 8 domain expert-curated templates to reflect practical tasks encountered by human scientists. These range from basic queries at a single location and time to complex spatiotemporal comparisons across regions and periods. Our evaluation reveals that vision-language models perform best overall, and we provide a fine-grained analysis of the strengths and limitations of different foundation models in different geo-spatial tasks. This benchmark offers clearer insights into how foundation models can be effectively applied to geo-spatial data analysis and used to support scientific research.
Related papers
- OmniGeo: Towards a Multimodal Large Language Models for Geospatial Artificial Intelligence [51.0456395687016]
multimodal large language models (LLMs) have opened new frontiers in artificial intelligence.<n>We propose a MLLM (OmniGeo) tailored to geospatial applications.<n>By combining the strengths of natural language understanding and spatial reasoning, our model enhances the ability of instruction following and the accuracy of GeoAI systems.
arXiv Detail & Related papers (2025-03-20T16:45:48Z) - GeoJEPA: Towards Eliminating Augmentation- and Sampling Bias in Multimodal Geospatial Learning [0.0]
We present GeoJEPA, a versatile multimodal fusion model for geospatial data built on the self-supervised Joint-Embedding Predictive Architecture.<n>We aim to eliminate the widely accepted augmentation- and sampling biases found in self-supervised geospatial representation learning.<n>The results are multimodal semantic representations of urban regions and map entities that we evaluate both quantitatively and qualitatively.
arXiv Detail & Related papers (2025-02-25T22:03:28Z) - Geolocation with Real Human Gameplay Data: A Large-Scale Dataset and Human-Like Reasoning Framework [59.42946541163632]
We introduce a comprehensive geolocation framework with three key components.<n>GeoComp, a large-scale dataset; GeoCoT, a novel reasoning method; and GeoEval, an evaluation metric.<n>We demonstrate that GeoCoT significantly boosts geolocation accuracy by up to 25% while enhancing interpretability.
arXiv Detail & Related papers (2025-02-19T14:21:25Z) - PEACE: Empowering Geologic Map Holistic Understanding with MLLMs [64.58959634712215]
Geologic map, as a fundamental diagram in geology science, provides critical insights into the structure and composition of Earth's subsurface and surface.<n>Despite their significance, current Multimodal Large Language Models (MLLMs) often fall short in geologic map understanding.<n>To quantify this gap, we construct GeoMap-Bench, the first-ever benchmark for evaluating MLLMs in geologic map understanding.
arXiv Detail & Related papers (2025-01-10T18:59:42Z) - GEOBench-VLM: Benchmarking Vision-Language Models for Geospatial Tasks [84.86699025256705]
We present GEOBench-VLM, a benchmark specifically designed to evaluate Vision-Language Models (VLMs) on geospatial tasks.<n>Our benchmark features over 10,000 manually verified instructions and spanning diverse visual conditions, object types, and scales.<n>We evaluate several state-of-the-art VLMs to assess performance on geospatial-specific challenges.
arXiv Detail & Related papers (2024-11-28T18:59:56Z) - Self-Supervised Representation Learning for Geospatial Objects: A Survey [21.504978593542354]
Self-supervised learning (SSL) has garnered increasing attention for its ability to learn effective and generalizable representations directly from data without extensive labeled supervision.<n>This paper presents a survey of SSL techniques specifically applied to or developed for geospatial objects in three primary geometric vector types: Point, Polyline, and Polygon.<n>We examine the emerging trends in SSL for geospatial objects, particularly the gradual advancements towards geospatial foundation models.
arXiv Detail & Related papers (2024-08-22T05:28:22Z) - TorchSpatial: A Location Encoding Framework and Benchmark for Spatial Representation Learning [36.725822223732635]
We propose TorchSpatial, a learning framework and benchmark for location (point) encoding.<n>TorchSpatial contains three key components: 1) a unified location encoding framework that consolidates 15 commonly recognized location encoders; 2) the LocBench benchmark tasks encompassing 7 geo-aware image classification and 10 geo-aware image regression datasets; and 3) a comprehensive suite of evaluation metrics to quantify geo-aware model's overall performance as well as their geographic bias, with a novel Geo-Bias Score metric.
arXiv Detail & Related papers (2024-06-21T21:33:16Z) - GeoGLUE: A GeoGraphic Language Understanding Evaluation Benchmark [56.08664336835741]
We propose a GeoGraphic Language Understanding Evaluation benchmark, named GeoGLUE.
We collect data from open-released geographic resources and introduce six natural language understanding tasks.
We pro vide evaluation experiments and analysis of general baselines, indicating the effectiveness and significance of the GeoGLUE benchmark.
arXiv Detail & Related papers (2023-05-11T03:21:56Z) - On the Opportunities and Challenges of Foundation Models for Geospatial
Artificial Intelligence [39.86997089245117]
Foundations models (FMs) can be adapted to a wide range of downstream tasks by fine-tuning, few-shot, or zero-shot learning.
We propose that one of the major challenges of developing a FM for GeoAI is to address the multimodality nature of geospatial tasks.
arXiv Detail & Related papers (2023-04-13T19:50:17Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
We present a roadmap towards the construction of a general-purpose neural architecture (GPNA) with a geospatial inductive bias.
We envision how such a model may facilitate cooperation between members of the community.
arXiv Detail & Related papers (2022-11-04T09:58:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.