GeoJEPA: Towards Eliminating Augmentation- and Sampling Bias in Multimodal Geospatial Learning
- URL: http://arxiv.org/abs/2503.05774v1
- Date: Tue, 25 Feb 2025 22:03:28 GMT
- Title: GeoJEPA: Towards Eliminating Augmentation- and Sampling Bias in Multimodal Geospatial Learning
- Authors: Theodor Lundqvist, Ludvig Delvret,
- Abstract summary: We present GeoJEPA, a versatile multimodal fusion model for geospatial data built on the self-supervised Joint-Embedding Predictive Architecture.<n>We aim to eliminate the widely accepted augmentation- and sampling biases found in self-supervised geospatial representation learning.<n>The results are multimodal semantic representations of urban regions and map entities that we evaluate both quantitatively and qualitatively.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing methods for self-supervised representation learning of geospatial regions and map entities rely extensively on the design of pretext tasks, often involving augmentations or heuristic sampling of positive and negative pairs based on spatial proximity. This reliance introduces biases and limits the representations' expressiveness and generalisability. Consequently, the literature has expressed a pressing need to explore different methods for modelling geospatial data. To address the key difficulties of such methods, namely multimodality, heterogeneity, and the choice of pretext tasks, we present GeoJEPA, a versatile multimodal fusion model for geospatial data built on the self-supervised Joint-Embedding Predictive Architecture. With GeoJEPA, we aim to eliminate the widely accepted augmentation- and sampling biases found in self-supervised geospatial representation learning. GeoJEPA uses self-supervised pretraining on a large dataset of OpenStreetMap attributes, geometries and aerial images. The results are multimodal semantic representations of urban regions and map entities that we evaluate both quantitatively and qualitatively. Through this work, we uncover several key insights into JEPA's ability to handle multimodal data.
Related papers
- OmniGeo: Towards a Multimodal Large Language Models for Geospatial Artificial Intelligence [51.0456395687016]
multimodal large language models (LLMs) have opened new frontiers in artificial intelligence.
We propose a MLLM (OmniGeo) tailored to geospatial applications.
By combining the strengths of natural language understanding and spatial reasoning, our model enhances the ability of instruction following and the accuracy of GeoAI systems.
arXiv Detail & Related papers (2025-03-20T16:45:48Z) - GeoAggregator: An Efficient Transformer Model for Geo-Spatial Tabular Data [5.40483645224129]
This paper introduces GeoAggregator, an efficient and lightweight algorithm for geospatial data modeling.
We benchmark it against spatial statistical models, XGBoost, and several state-of-the-art geospatial deep learning methods.
Results demonstrate that GeoAggregators achieve the best or second-best performance compared to their competitors on nearly all datasets.
arXiv Detail & Related papers (2025-02-20T20:39:15Z) - Geolocation with Real Human Gameplay Data: A Large-Scale Dataset and Human-Like Reasoning Framework [59.42946541163632]
We introduce a comprehensive geolocation framework with three key components.<n>GeoComp, a large-scale dataset; GeoCoT, a novel reasoning method; and GeoEval, an evaluation metric.<n>We demonstrate that GeoCoT significantly boosts geolocation accuracy by up to 25% while enhancing interpretability.
arXiv Detail & Related papers (2025-02-19T14:21:25Z) - PEACE: Empowering Geologic Map Holistic Understanding with MLLMs [64.58959634712215]
Geologic map, as a fundamental diagram in geology science, provides critical insights into the structure and composition of Earth's subsurface and surface.
Despite their significance, current Multimodal Large Language Models (MLLMs) often fall short in geologic map understanding.
To quantify this gap, we construct GeoMap-Bench, the first-ever benchmark for evaluating MLLMs in geologic map understanding.
arXiv Detail & Related papers (2025-01-10T18:59:42Z) - Self-supervised Learning for Geospatial AI: A Survey [21.504978593542354]
Self-supervised learning (SSL) has attracted increasing attention for its adoption in geospatial data.
This paper conducts a comprehensive and up-to-date survey of SSL techniques applied to or developed for three primary data (geometric) types prevalent in geospatial vector data.
arXiv Detail & Related papers (2024-08-22T05:28:22Z) - Swarm Intelligence in Geo-Localization: A Multi-Agent Large Vision-Language Model Collaborative Framework [51.26566634946208]
We introduce smileGeo, a novel visual geo-localization framework.
By inter-agent communication, smileGeo integrates the inherent knowledge of these agents with additional retrieved information.
Results show that our approach significantly outperforms current state-of-the-art methods.
arXiv Detail & Related papers (2024-08-21T03:31:30Z) - Space-aware Socioeconomic Indicator Inference with Heterogeneous Graphs [19.62565545759899]
We present GeoHG, the first space-aware socioeconomic indicator inference method that utilizes a heterogeneous graph-based structure to represent geospace for non-continuous inference.
arXiv Detail & Related papers (2024-05-23T03:19:02Z) - GeoLLM: Extracting Geospatial Knowledge from Large Language Models [49.20315582673223]
We present GeoLLM, a novel method that can effectively extract geospatial knowledge from large language models.
We demonstrate the utility of our approach across multiple tasks of central interest to the international community, including the measurement of population density and economic livelihoods.
Our experiments reveal that LLMs are remarkably sample-efficient, rich in geospatial information, and robust across the globe.
arXiv Detail & Related papers (2023-10-10T00:03:23Z) - On the Opportunities and Challenges of Foundation Models for Geospatial
Artificial Intelligence [39.86997089245117]
Foundations models (FMs) can be adapted to a wide range of downstream tasks by fine-tuning, few-shot, or zero-shot learning.
We propose that one of the major challenges of developing a FM for GeoAI is to address the multimodality nature of geospatial tasks.
arXiv Detail & Related papers (2023-04-13T19:50:17Z) - Towards Geospatial Foundation Models via Continual Pretraining [22.825065739563296]
We propose a novel paradigm for building highly effective foundation models with minimal resource cost and carbon impact.
We first construct a compact yet diverse dataset from multiple sources to promote feature diversity, which we term GeoPile.
Then, we investigate the potential of continual pretraining from large-scale ImageNet-22k models and propose a multi-objective continual pretraining paradigm.
arXiv Detail & Related papers (2023-02-09T07:39:02Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
We present a roadmap towards the construction of a general-purpose neural architecture (GPNA) with a geospatial inductive bias.
We envision how such a model may facilitate cooperation between members of the community.
arXiv Detail & Related papers (2022-11-04T09:58:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.