論文の概要: Random Client Selection on Contrastive Federated Learning for Tabular Data
- arxiv url: http://arxiv.org/abs/2505.10759v1
- Date: Fri, 16 May 2025 00:20:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-19 14:36:13.773462
- Title: Random Client Selection on Contrastive Federated Learning for Tabular Data
- Title(参考訳): 単語データに対する対照的フェデレーション学習におけるランダムクライアントの選択
- Authors: Achmad Ginanjar, Xue Li, Priyanka Singh, Wen Hua,
- Abstract要約: Vertical Federated Learning (VFL)は、複数のパーティでプライバシ保護モデルトレーニングを可能にすることによって、コラボレーション機械学習に革命をもたらした。
中間計算共有時の情報漏洩に弱いままである。
コントラシブ・フェデレート・ラーニング(CFL)は、これらのプライバシー問題を表現学習によって緩和するために導入された。
本稿では,CFL環境における勾配に基づく攻撃の包括的実験的解析について述べる。
- 参考スコア(独自算出の注目度): 11.930322590346139
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vertical Federated Learning (VFL) has revolutionised collaborative machine learning by enabling privacy-preserving model training across multiple parties. However, it remains vulnerable to information leakage during intermediate computation sharing. While Contrastive Federated Learning (CFL) was introduced to mitigate these privacy concerns through representation learning, it still faces challenges from gradient-based attacks. This paper presents a comprehensive experimental analysis of gradient-based attacks in CFL environments and evaluates random client selection as a defensive strategy. Through extensive experimentation, we demonstrate that random client selection proves particularly effective in defending against gradient attacks in the CFL network. Our findings provide valuable insights for implementing robust security measures in contrastive federated learning systems, contributing to the development of more secure collaborative learning frameworks
- Abstract(参考訳): Vertical Federated Learning (VFL)は、複数のパーティでプライバシ保護モデルトレーニングを可能にすることによって、コラボレーション機械学習に革命をもたらした。
しかし、中間計算共有時の情報漏洩には弱いままである。
Contrastive Federated Learning (CFL)は、これらのプライバシの問題を表現学習によって緩和するために導入されたが、グラデーションベースの攻撃による課題に直面している。
本稿では,CFL環境における勾配に基づく攻撃の包括的実験的解析を行い,ランダムクライアントの選択を防御戦略として評価する。
広範囲な実験を通して、CFLネットワークにおける勾配攻撃に対する防御において、ランダムなクライアント選択が特に有効であることを示す。
コントラスト学習システムにおける堅牢なセキュリティ対策の実現に有用な知見が得られ,よりセキュアな協調学習フレームワークの開発に寄与している。
関連論文リスト
- Just a Simple Transformation is Enough for Data Protection in Vertical Federated Learning [83.90283731845867]
我々は、入力データ妥協を目標とする一般的なリスクである特徴再構成攻撃について検討する。
フェデレーションベースのモデルは、最先端の機能再構築攻撃に耐性があることが示される。
論文 参考訳(メタデータ) (2024-12-16T12:02:12Z) - FEDLAD: Federated Evaluation of Deep Leakage Attacks and Defenses [50.921333548391345]
フェデレーテッド・ラーニング(Federated Learning)は、分散型機械学習パラダイムをプライバシ保護するものだ。
近年の研究では、Deep Leakageと呼ばれる勾配技術によって、民間の真実データを復元できることが判明している。
本稿では、Deep Leakage攻撃と防御を評価するための総合的なベンチマークであるFEDLAD Framework(Federated Evaluation of Deep Leakage Attacks and Defenses)を紹介する。
論文 参考訳(メタデータ) (2024-11-05T11:42:26Z) - UIFV: Data Reconstruction Attack in Vertical Federated Learning [5.404398887781436]
Vertical Federated Learning (VFL)は、参加者が生のプライベートデータを共有することなく、協調的な機械学習を促進する。
近年の研究では、学習プロセス中にデータ漏洩によって、敵が機密性を再構築する可能性のあるプライバシーリスクが明らかにされている。
我々の研究は、実用的なVFLアプリケーションに真の脅威をもたらす、VFLシステム内の深刻なプライバシー上の脆弱性を露呈する。
論文 参考訳(メタデータ) (2024-06-18T13:18:52Z) - Secure Vertical Federated Learning Under Unreliable Connectivity [22.03946356498099]
我々は、最初のドロップアウト耐性VFLプロトコルであるvFedSecを紹介する。
埋め込み-パディング技術とともに革新的なSecure Layerを使用することで、セキュアで効率的なモデルトレーニングを実現する。
論文 参考訳(メタデータ) (2023-05-26T10:17:36Z) - Efficient Vertical Federated Learning with Secure Aggregation [10.295508659999783]
本稿では,安全アグリゲーションのための最先端セキュリティモジュールを用いて,垂直FLを安全かつ効率的に訓練するための新しい設計を提案する。
我々は,同相暗号 (HE) と比較して9.1e2 3.8e4 の高速化を図りながら,本手法がトレーニング性能に影響を及ぼさないことを実証的に実証した。
論文 参考訳(メタデータ) (2023-05-18T18:08:36Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
対人訓練と連合学習の組み合わせは、望ましくない頑丈さの劣化につながる可能性がある。
我々は、Slack Federated Adversarial Training (SFAT)と呼ばれる新しいフレームワークを提案する。
各種ベンチマークおよび実世界のデータセットに対するSFATの合理性と有効性を検証する。
論文 参考訳(メタデータ) (2023-03-01T06:16:15Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。