論文の概要: SurgXBench: Explainable Vision-Language Model Benchmark for Surgery
- arxiv url: http://arxiv.org/abs/2505.10764v3
- Date: Wed, 23 Jul 2025 04:04:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-24 14:06:49.211485
- Title: SurgXBench: Explainable Vision-Language Model Benchmark for Surgery
- Title(参考訳): SurgXBench: 手術のための説明可能な視覚言語モデルベンチマーク
- Authors: Jiajun Cheng, Xianwu Zhao, Sainan Liu, Xiaofan Yu, Ravi Prakash, Patrick J. Codd, Jonathan Elliott Katz, Shan Lin,
- Abstract要約: VLM(Vision-Language Models)は、視覚とテキストのモダリティを横断する推論において、革新的な進歩をもたらした。
既存のモデルはパフォーマンスが限られており、その能力と限界を評価するためのベンチマーク研究の必要性を強調している。
ロボット支援型腹腔鏡による機器分類と動作分類のための2つのデータセットに対して,いくつかの先進VLMのゼロショット性能をベンチマークした。
- 参考スコア(独自算出の注目度): 4.068223793121694
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Innovations in digital intelligence are transforming robotic surgery with more informed decision-making. Real-time awareness of surgical instrument presence and actions (e.g., cutting tissue) is essential for such systems. Yet, despite decades of research, most machine learning models for this task are trained on small datasets and still struggle to generalize. Recently, vision-Language Models (VLMs) have brought transformative advances in reasoning across visual and textual modalities. Their unprecedented generalization capabilities suggest great potential for advancing intelligent robotic surgery. However, surgical VLMs remain under-explored, and existing models show limited performance, highlighting the need for benchmark studies to assess their capabilities and limitations and to inform future development. To this end, we benchmark the zero-shot performance of several advanced VLMs on two public robotic-assisted laparoscopic datasets for instrument and action classification. Beyond standard evaluation, we integrate explainable AI to visualize VLM attention and uncover causal explanations behind their predictions. This provides a previously underexplored perspective in this field for evaluating the reliability of model predictions. We also propose several explainability analysis-based metrics to complement standard evaluations. Our analysis reveals that surgical VLMs, despite domain-specific training, often rely on weak contextual cues rather than clinically relevant visual evidence, highlighting the need for stronger visual and reasoning supervision in surgical applications.
- Abstract(参考訳): デジタルインテリジェンスにおけるイノベーションは、より情報のある意思決定でロボット手術を変革している。
手術器具の存在と動作(例えば切削組織)をリアルタイムに認識することは,そのようなシステムに不可欠である。
しかし、何十年もの研究にもかかわらず、このタスクのためのほとんどの機械学習モデルは、小さなデータセットで訓練されており、それでも一般化に苦慮している。
近年、視覚言語モデル (VLM) は、視覚的・テキスト的モダリティを横断する推論において、トランスフォーメーションの進歩をもたらした。
彼らの前例のない一般化能力は、インテリジェントなロボット手術を前進させる大きな可能性を示唆している。
しかし、手術用VLMは未探索のままであり、既存のモデルは性能が限られており、それらの能力と限界を評価し、将来の発展を知らせるためにベンチマーク研究の必要性を強調している。
そこで本研究では,2つのロボット支援腹腔鏡による計器・動作分類データセットに対して,いくつかの高度なVLMのゼロショット性能をベンチマークした。
標準的な評価以外にも、説明可能なAIを統合して、VLMの注意を可視化し、それらの予測の背後にある因果説明を明らかにする。
これは、モデル予測の信頼性を評価するために、この分野において以前に未調査の視点を提供する。
また、標準的な評価を補完するために、いくつかの説明可能性分析に基づくメトリクスを提案する。
本研究は, 外科的VLMは, 領域固有の訓練にもかかわらず, 臨床的に関連のある視覚的証拠ではなく, 弱い文脈的手がかりに頼っており, 外科的応用におけるより強力な視覚的・理性指導の必要性を浮き彫りにしている。
関連論文リスト
- Challenging Vision-Language Models with Surgical Data: A New Dataset and Broad Benchmarking Study [0.6120768859742071]
本研究は,視覚言語モデル(VLM)の内視鏡的課題に対する能力を評価するための大規模な研究である。
さまざまな最先端モデル、複数の外科的データセット、広範囲な人間の参照アノテーションを用いて、3つの重要な研究課題に対処する。
以上の結果から,VLMはオブジェクトカウントやローカライゼーションなどの基本的な外科的知覚タスクを,一般的なドメインタスクに匹敵するパフォーマンスレベルで効果的に行うことができることがわかった。
論文 参考訳(メタデータ) (2025-06-06T16:53:12Z) - Systematic Evaluation of Large Vision-Language Models for Surgical Artificial Intelligence [1.1765603103920352]
大規模ビジョンランゲージモデルは、AI駆動の画像理解のための新しいパラダイムを提供する。
この柔軟性は、専門家がアノテートしたデータが不足している医療全体において特に有望である。
本稿では,外科的AIにおける17の視覚的理解課題を対象に,11の最先端VLMの総合的分析を行う。
論文 参考訳(メタデータ) (2025-04-03T17:42:56Z) - Retrieval Augmented Generation and Understanding in Vision: A Survey and New Outlook [85.43403500874889]
Retrieval-augmented Generation (RAG) は人工知能(AI)において重要な技術である。
具体化されたAIのためのRAGの最近の進歩は、特に計画、タスク実行、マルチモーダル知覚、インタラクション、特殊ドメインの応用に焦点を当てている。
論文 参考訳(メタデータ) (2025-03-23T10:33:28Z) - A Data-Centric Revisit of Pre-Trained Vision Models for Robot Learning [67.72413262980272]
事前訓練された視覚モデル(PVM)は現代のロボティクスの基本であるが、その最適構成は定かではない。
セマンティック・ボトルネックを導入してオブジェクト中心の表現を誘導する手法であるSlotMIMを開発した。
提案手法は,画像認識,シーン理解,ロボット学習評価において,従来の作業よりも大幅に改善されている。
論文 参考訳(メタデータ) (2025-03-10T06:18:31Z) - VACT: A Video Automatic Causal Testing System and a Benchmark [55.53300306960048]
VACTは、現実世界のシナリオにおけるVGMの因果的理解をモデル化、評価、測定するための**自動**フレームワークである。
マルチレベル因果評価指標を導入し、VGMの因果性能を詳細に分析する。
論文 参考訳(メタデータ) (2025-03-08T10:54:42Z) - EndoChat: Grounded Multimodal Large Language Model for Endoscopic Surgery [52.992415247012296]
手術シーン理解における対話のパラダイムやサブタスクに対処するために,EndoChatを導入する。
本モデルは,5つの対話パラダイムと8つの手術シーン理解タスクにまたがって,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2025-01-20T09:12:06Z) - Surgical-LLaVA: Toward Surgical Scenario Understanding via Large Language and Vision Models [1.4042211166197214]
手術シナリオに特化して設計されたLVLMについて紹介する。
LVLMモデルであるオペレーショナル・ラヴァを手術シナリオのデータに基づいて微調整した。
外科的ララバは、外科的文脈において、印象的なマルチモーダルチャット能力を示すことを示す実験である。
論文 参考訳(メタデータ) (2024-10-13T07:12:35Z) - Procedure-Aware Surgical Video-language Pretraining with Hierarchical Knowledge Augmentation [51.222684687924215]
手術用ビデオ言語事前学習は、知識領域のギャップとマルチモーダルデータの不足により、独特な課題に直面している。
本稿では,これらの課題に対処するために,階層的知識向上手法と新しい手術的知識向上型ビデオランゲージ事前学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-30T22:21:05Z) - ReVLA: Reverting Visual Domain Limitation of Robotic Foundation Models [55.07988373824348]
既存の3つのロボット基礎モデルの視覚的一般化能力について検討する。
本研究は,既存のモデルがドメイン外シナリオに対する堅牢性を示していないことを示す。
モデルマージに基づく段階的なバックボーンリバーサルアプローチを提案する。
論文 参考訳(メタデータ) (2024-09-23T17:47:59Z) - ORacle: Large Vision-Language Models for Knowledge-Guided Holistic OR Domain Modeling [41.30327565949726]
ORacleは、汎用ORドメインモデリング用に設計された高度な視覚言語モデルである。
マルチビューとテンポラリな機能を備えており、推論中に外部の知識を活用でき、これまで見つからなかった手術シナリオに適応することができる。
厳密なテスト、シーングラフ生成、および4D-ORデータセットの下流タスクでは、ORacleは最先端のパフォーマンスを示すだけでなく、既存のモデルよりも少ないデータを必要とする。
論文 参考訳(メタデータ) (2024-04-10T14:24:10Z) - Pixel-Wise Recognition for Holistic Surgical Scene Understanding [33.40319680006502]
本稿では,前立腺腫データセットの全体的および多角的手術シーン理解について述べる。
本ベンチマークでは,様々な粒度の相補的タスクの階層構造として,外科的シーン理解をモデル化する。
提案したベンチマークを活用するために,Transformers for Actions, Phases, Steps, and Instruments(TAPIS)モデルを導入する。
論文 参考訳(メタデータ) (2024-01-20T09:09:52Z) - Learning Multi-modal Representations by Watching Hundreds of Surgical Video Lectures [50.09187683845788]
手術用コンピュータビジョンの応用の最近の進歩は、視覚のみのモデルによって駆動されている。
これらの手法は、固定されたオブジェクトカテゴリのセットを予測するために手動で注釈付き手術ビデオに依存する。
本研究では,オープンな外科的eラーニングプラットフォームを通じて提供される外科的ビデオ講義が,効果的な視覚と言語監督の信号を提供することができるという考えを提起した。
論文 参考訳(メタデータ) (2023-07-27T22:38:12Z) - Dissecting Self-Supervised Learning Methods for Surgical Computer Vision [51.370873913181605]
一般のコンピュータビジョンコミュニティでは,自己監視学習(SSL)手法が普及し始めている。
医学や手術など、より複雑で影響力のある領域におけるSSLメソッドの有効性は、限定的かつ未調査のままである。
外科的文脈理解,位相認識,ツール存在検出の2つの基本的なタスクに対して,これらの手法の性能をColec80データセット上で広範囲に解析する。
論文 参考訳(メタデータ) (2022-07-01T14:17:11Z) - Surgical Visual Domain Adaptation: Results from the MICCAI 2020
SurgVisDom Challenge [9.986124942784969]
この研究は、データプライバシの懸念を克服するために、手術における視覚領域適応の可能性を探究する。
特に,外科手術のバーチャルリアリティ(VR)シミュレーションのビデオを用いて,臨床ライクな環境下でのタスク認識アルゴリズムの開発を提案する。
課題参加者によって開発された視覚的ドメイン適応を解決するためのさまざまなアプローチのパフォーマンスを紹介します。
論文 参考訳(メタデータ) (2021-02-26T18:45:28Z) - Machine learning-based clinical prediction modeling -- A practical guide
for clinicians [0.0]
機械学習や人工知能に関連する原稿の数は、ここ数年で指数関数的に増えている。
第1節では、機械学習の一般的な原理について解説する。
さらに,再サンプリング,オーバーフィッティング,モデル一般化性の重要性とモデル評価戦略を概観する。
論文 参考訳(メタデータ) (2020-06-23T20:11:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。