RAN Tester UE: An Automated Declarative UE Centric Security Testing Platform
- URL: http://arxiv.org/abs/2505.10812v1
- Date: Fri, 16 May 2025 03:12:38 GMT
- Title: RAN Tester UE: An Automated Declarative UE Centric Security Testing Platform
- Authors: Charles Marion Ueltschey, Joshua Moore, Aly Sabri Abdalla, Vuk Marojevic,
- Abstract summary: This paper introduces an automated, adaptive, and scalable user equipment (UE) based RAN security testing framework.<n>Results on a 5G software testbed built with commercial off-the-shelf hardware and open source software.
- Score: 2.943640991628177
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Cellular networks require strict security procedures and measures across various network components, from core to radio access network (RAN) and end-user devices. As networks become increasingly complex and interconnected, as in O-RAN deployments, they are exposed to a numerous security threats. Therefore, ensuring robust security is critical for O-RAN to protect network integrity and safeguard user data. This requires rigorous testing methodologies to mitigate threats. This paper introduces an automated, adaptive, and scalable user equipment (UE) based RAN security testing framework designed to address the shortcomings of existing RAN testing solutions. Experimental results on a 5G software radio testbed built with commercial off-the-shelf hardware and open source software validate the efficiency and reproducibility of sample security test procedures developed on the RAN Tester UE framework.
Related papers
- OpenAgentSafety: A Comprehensive Framework for Evaluating Real-World AI Agent Safety [58.201189860217724]
We introduce OpenAgentSafety, a comprehensive framework for evaluating agent behavior across eight critical risk categories.<n>Unlike prior work, our framework evaluates agents that interact with real tools, including web browsers, code execution environments, file systems, bash shells, and messaging platforms.<n>It combines rule-based analysis with LLM-as-judge assessments to detect both overt and subtle unsafe behaviors.
arXiv Detail & Related papers (2025-07-08T16:18:54Z) - SafeAgent: Safeguarding LLM Agents via an Automated Risk Simulator [77.86600052899156]
Large Language Model (LLM)-based agents are increasingly deployed in real-world applications.<n>We propose AutoSafe, the first framework that systematically enhances agent safety through fully automated synthetic data generation.<n>We show that AutoSafe boosts safety scores by 45% on average and achieves a 28.91% improvement on real-world tasks.
arXiv Detail & Related papers (2025-05-23T10:56:06Z) - Rogue Cell: Adversarial Attack and Defense in Untrusted O-RAN Setup Exploiting the Traffic Steering xApp [24.941343115166436]
Open Radio Access Network (O-RAN) architecture is revolutionizing cellular networks with its open, multi-vendor design and AI-driven management.<n>Previous studies have mainly examined vulnerabilities arising from O-RAN's intelligent components.<n>This paper is the first to focus on the security challenges and vulnerabilities introduced by transitioning from single-operator to multi-operator RAN architectures.
arXiv Detail & Related papers (2025-05-03T13:19:44Z) - Large-Scale (Semi-)Automated Security Assessment of Consumer IoT Devices -- A Roadmap [1.4680035572775536]
The Internet of Things (IoT) has rapidly expanded across various sectors, with consumer IoT devices experiencing growth.<n>Common and easy-to-explore vulnerabilities make IoT devices prime targets for malicious actors.<n>This paper reviews current IoT security challenges and assessment efforts, identifies gaps, and proposes a roadmap for scalable, automated security assessment.
arXiv Detail & Related papers (2025-04-09T09:15:04Z) - Integrated LLM-Based Intrusion Detection with Secure Slicing xApp for Securing O-RAN-Enabled Wireless Network Deployments [2.943640991628177]
The Open Radio Access Network (O-RAN) architecture is reshaping telecommunications by promoting openness, flexibility, and intelligent closed-loop optimization.<n>This research explores using large language models (LLMs) to generate security recommendations based on the temporal traffic patterns of connected UEs.
arXiv Detail & Related papers (2025-04-01T01:45:07Z) - Towards Trustworthy GUI Agents: A Survey [64.6445117343499]
This survey examines the trustworthiness of GUI agents in five critical dimensions.<n>We identify major challenges such as vulnerability to adversarial attacks, cascading failure modes in sequential decision-making.<n>As GUI agents become more widespread, establishing robust safety standards and responsible development practices is essential.
arXiv Detail & Related papers (2025-03-30T13:26:00Z) - ACRIC: Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
Recent security incidents in safety-critical industries exposed how the lack of proper message authentication enables attackers to inject malicious commands or alter system behavior.<n>These shortcomings have prompted new regulations that emphasize the pressing need to strengthen cybersecurity.<n>We introduce ACRIC, a message authentication solution to secure legacy industrial communications.
arXiv Detail & Related papers (2024-11-21T18:26:05Z) - Soft Tester UE: A Novel Approach for Open RAN Security Testing [2.943640991628177]
This article introduces the Soft Tester UE (soft T-UE), a software-defined test equipment designed to evaluate the security of 5G and O-RAN deployments.
The soft T-UE promotes the development of new security measures and enhances the capability to anticipate and mitigate potential security breaches.
arXiv Detail & Related papers (2024-10-12T20:35:49Z) - Securing the Open RAN Infrastructure: Exploring Vulnerabilities in Kubernetes Deployments [60.51751612363882]
We investigate the security implications of and software-based Open Radio Access Network (RAN) systems.
We highlight the presence of potential vulnerabilities and misconfigurations in the infrastructure supporting the Near Real-Time RAN Controller (RIC) cluster.
arXiv Detail & Related papers (2024-05-03T07:18:45Z) - ZTRAN: Prototyping Zero Trust Security xApps for Open Radio Access Network Deployments [2.943640991628177]
Open radio access network (O-RAN) offers new degrees of freedom for building and operating advanced cellular networks.
This paper proposes leveraging zero trust principles for O-RAN security.
We introduce zero trust RAN (ZTRAN), which embeds service authentication, intrusion detection, and secure slicing subsystems that are encapsulated as xApps.
arXiv Detail & Related papers (2024-03-06T23:57:16Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
The Controller Area Network (CAN) bus leaves in-vehicle communications inherently non-secure.
This paper reviews and compares the 15 most prominent authentication protocols for the CAN bus.
We evaluate protocols based on essential operational criteria that contribute to ease of implementation.
arXiv Detail & Related papers (2024-01-19T14:52:04Z) - Safe RAN control: A Symbolic Reinforcement Learning Approach [62.997667081978825]
We present a Symbolic Reinforcement Learning (SRL) based architecture for safety control of Radio Access Network (RAN) applications.
We provide a purely automated procedure in which a user can specify high-level logical safety specifications for a given cellular network topology.
We introduce a user interface (UI) developed to help a user set intent specifications to the system, and inspect the difference in agent proposed actions.
arXiv Detail & Related papers (2021-06-03T16:45:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.