論文の概要: Foundation model for mass spectrometry proteomics
- arxiv url: http://arxiv.org/abs/2505.10848v2
- Date: Mon, 19 May 2025 03:28:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 12:45:56.183376
- Title: Foundation model for mass spectrometry proteomics
- Title(参考訳): 質量分析プロテオミクスの基礎モデル
- Authors: Justin Sanders, Melih Yilmaz, Jacob H. Russell, Wout Bittremieux, William E. Fondrie, Nicholas M. Riley, Sewoong Oh, William Stafford Noble,
- Abstract要約: 本稿では,質量スペクトルの1つの基礎モデルの下で,様々なスペクトル予測タスクを統合することを提案する。
これらの事前訓練されたスペクトル表現を用いることで、下流の4つのタスクの性能が向上することを示す。
- 参考スコア(独自算出の注目度): 22.385489678681907
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Mass spectrometry is the dominant technology in the field of proteomics, enabling high-throughput analysis of the protein content of complex biological samples. Due to the complexity of the instrumentation and resulting data, sophisticated computational methods are required for the processing and interpretation of acquired mass spectra. Machine learning has shown great promise to improve the analysis of mass spectrometry data, with numerous purpose-built methods for improving specific steps in the data acquisition and analysis pipeline reaching widespread adoption. Here, we propose unifying various spectrum prediction tasks under a single foundation model for mass spectra. To this end, we pre-train a spectrum encoder using de novo sequencing as a pre-training task. We then show that using these pre-trained spectrum representations improves our performance on the four downstream tasks of spectrum quality prediction, chimericity prediction, phosphorylation prediction, and glycosylation status prediction. Finally, we perform multi-task fine-tuning and find that this approach improves the performance on each task individually. Overall, our work demonstrates that a foundation model for tandem mass spectrometry proteomics trained on de novo sequencing learns generalizable representations of spectra, improves performance on downstream tasks where training data is limited, and can ultimately enhance data acquisition and analysis in proteomics experiments.
- Abstract(参考訳): 質量分析法はプロテオミクスの分野で支配的な技術であり、複雑な生物学的サンプルのタンパク質の高スループット分析を可能にする。
計測と結果データの複雑さのため、取得した質量スペクトルの処理と解釈には洗練された計算方法が必要である。
機械学習は、データ取得と分析パイプラインにおける特定のステップを改善するために、多くの目的に構築されたメソッドが広く採用されているため、質量分析データの解析を改善するという大きな可能性を示してきた。
本稿では,質量スペクトルの1つの基礎モデルの下で,様々なスペクトル予測タスクを統合することを提案する。
そこで我々は,de novoシークエンシングを事前学習タスクとして用いたスペクトルエンコーダを事前訓練する。
次に、これらの事前学習スペクトル表現を用いることで、スペクトル品質予測、キメラティ予測、リン酸化予測、糖化状態予測の4つの下流タスクのパフォーマンスが向上することを示す。
最後に、マルチタスクの微調整を行い、本手法は各タスクの性能を個別に改善する。
本研究は,デノボシークエンシングで訓練されたタンデム質量分析プロテオミクスの基礎モデルが,スペクトルの一般化可能な表現を学習し,トレーニングデータに制限のある下流タスクの性能を改善し,究極的にはプロテオミクス実験におけるデータ取得と解析を向上させることを実証するものである。
関連論文リスト
- CARL: Camera-Agnostic Representation Learning for Spectral Image Analysis [75.25966323298003]
スペクトルイメージングは、医療や都市景観の理解など、様々な領域で有望な応用を提供する。
スペクトルカメラのチャネル次元と捕獲波長のばらつきは、AI駆動方式の開発を妨げる。
我々は、$textbfC$amera-$textbfA$gnostic $textbfR$esupervised $textbfL$のモデルである$textbfCARL$を紹介した。
論文 参考訳(メタデータ) (2025-04-27T13:06:40Z) - A Self-supervised Learning Method for Raman Spectroscopy based on Masked Autoencoders [3.9517125314802306]
SMAE と呼ばれる Masked AutoEncoder に基づくラマン分光の自己教師型学習パラダイムを提案する。
SMAEは、事前トレーニング中にスペクトルアノテーションを必要としない。ランダムなマスキングを行い、スペクトル情報を再構成することにより、本質的なスペクトル特徴を学習する。
論文 参考訳(メタデータ) (2025-04-21T10:44:06Z) - Deep Learning Domain Adaptation to Understand Physico-Chemical Processes from Fluorescence Spectroscopy Small Datasets: Application to Ageing of Olive Oil [4.14360329494344]
蛍光分光法は生命科学や化学の基本的な道具であり、環境モニタリング、食品品質管理、生物医学診断などの応用に広く用いられている。
深層学習を用いた分光データの解析、特に蛍光励起放出行列(EEM)は、通常、小さくてスパースなデータセットが利用できるため、大きな課題を提起する。
本研究では、これらの課題に対処する新しい解釈可能性アルゴリズムとともに、事前学習された視覚モデルによるドメイン適応を利用する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-06-14T13:41:21Z) - Efficient Prediction of Peptide Self-assembly through Sequential and
Graphical Encoding [57.89530563948755]
この研究は、高度なディープラーニングモデルを用いたペプチドエンコーディングのベンチマーク分析を提供する。
等電点や水和自由エネルギーなど、幅広いペプチド関連予測のガイドとして機能する。
論文 参考訳(メタデータ) (2023-07-17T00:43:33Z) - Spectrum-BERT: Pre-training of Deep Bidirectional Transformers for
Spectral Classification of Chinese Liquors [0.0]
本稿では,中国酒のスペクトル分類のための双方向トランスフォーマーの事前学習手法を提案し,これをSpectrum-BERTと略した。
我々はNext Curve Prediction (NCP) と Masked Curve Model (MCM) の2つの事前学習タスクを精巧に設計し、未ラベルのサンプルを効果的に活用できるようにした。
比較実験では、提案したSpectrum-BERTは、複数のメトリクスでベースラインを大幅に上回っている。
論文 参考訳(メタデータ) (2022-10-22T13:11:25Z) - Trustworthiness of Laser-Induced Breakdown Spectroscopy Predictions via
Simulation-based Synthetic Data Augmentation and Multitask Learning [4.633997895806144]
レーザ誘起分解分光法を用いてスペクトルデータの定量的解析を行う。
我々は、利用可能なトレーニングデータの小さなサイズと、未知のデータに対する推論中の予測の検証に対処する。
論文 参考訳(メタデータ) (2022-10-07T18:00:09Z) - Unsupervised Machine Learning for Exploratory Data Analysis of Exoplanet
Transmission Spectra [68.8204255655161]
我々は、通過する太陽系外惑星のスペクトルデータを解析するための教師なし手法に焦点をあてる。
スペクトルデータには、適切な低次元表現を要求する高い相関関係があることが示される。
主成分に基づく興味深い構造、すなわち、異なる化学状態に対応する明確に定義された分岐を明らかにする。
論文 参考訳(メタデータ) (2022-01-07T22:26:33Z) - A probabilistic deep learning approach to automate the interpretation of
multi-phase diffraction spectra [4.240899165468488]
シミュレーション回折スペクトルで訓練されたアンサンブル畳み込みニューラルネットワークを開発し、複素多相混合を同定する。
シミュレーションおよび実験的に測定された回折スペクトルをベンチマークし, これまでに報告した手法よりも精度が優れていることを示す。
論文 参考訳(メタデータ) (2021-03-30T20:13:01Z) - Revisiting the Sample Complexity of Sparse Spectrum Approximation of
Gaussian Processes [60.479499225746295]
本稿では,ガウス過程に対して,パラメータ空間全体に対して同時に保持可能な保証付きスケーラブルな近似を導入する。
我々の近似は、スパーススペクトルガウス過程(SSGP)のための改良されたサンプル複雑性解析から得られる。
論文 参考訳(メタデータ) (2020-11-17T05:41:50Z) - Spectral Analysis Network for Deep Representation Learning and Image
Clustering [53.415803942270685]
本稿ではスペクトル分析に基づく教師なし深層表現学習のための新しいネットワーク構造を提案する。
パッチレベルで画像間の局所的な類似性を識別できるため、閉塞に対してより堅牢である。
クラスタリングに親しみやすい表現を学習し、データサンプル間の深い相関を明らかにすることができる。
論文 参考訳(メタデータ) (2020-09-11T05:07:15Z) - Meta-learning framework with applications to zero-shot time-series
forecasting [82.61728230984099]
この研究は幅広いメタラーニングフレームワークを使って肯定的な証拠を提供する。
残余接続はメタラーニング適応機構として機能する。
我々は、ソースTSデータセット上でニューラルネットワークをトレーニングし、異なるターゲットTSデータセット上で再トレーニングすることなくデプロイできることを示します。
論文 参考訳(メタデータ) (2020-02-07T16:39:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。