InfantAgent-Next: A Multimodal Generalist Agent for Automated Computer Interaction
- URL: http://arxiv.org/abs/2505.10887v2
- Date: Fri, 23 May 2025 19:56:38 GMT
- Title: InfantAgent-Next: A Multimodal Generalist Agent for Automated Computer Interaction
- Authors: Bin Lei, Weitai Kang, Zijian Zhang, Winson Chen, Xi Xie, Shan Zuo, Mimi Xie, Ali Payani, Mingyi Hong, Yan Yan, Caiwen Ding,
- Abstract summary: This paper introduces textscInfantAgent-Next, a generalist agent capable of interacting with computers in a multimodal manner.<n>Unlike existing approaches that either build intricate around a single large model or only provide modularity, our agent integrates tool-based and pure vision agents.
- Score: 35.285466934451904
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces \textsc{InfantAgent-Next}, a generalist agent capable of interacting with computers in a multimodal manner, encompassing text, images, audio, and video. Unlike existing approaches that either build intricate workflows around a single large model or only provide workflow modularity, our agent integrates tool-based and pure vision agents within a highly modular architecture, enabling different models to collaboratively solve decoupled tasks in a step-by-step manner. Our generality is demonstrated by our ability to evaluate not only pure vision-based real-world benchmarks (i.e., OSWorld), but also more general or tool-intensive benchmarks (e.g., GAIA and SWE-Bench). Specifically, we achieve $\mathbf{7.27\%}$ accuracy on OSWorld, higher than Claude-Computer-Use. Codes and evaluation scripts are open-sourced at https://github.com/bin123apple/InfantAgent.
Related papers
- OS Agents: A Survey on MLLM-based Agents for General Computing Devices Use [101.57043903478257]
The dream to create AI assistants as capable and versatile as the fictional J.A.R.V.I.S from Iron Man has long captivated imaginations.<n>With the evolution of (multi-modal) large language models ((M)LLMs), this dream is closer to reality.<n>This survey aims to consolidate the state of OS Agents research, providing insights to guide both academic inquiry and industrial development.
arXiv Detail & Related papers (2025-08-06T14:33:45Z) - What Limits Virtual Agent Application? OmniBench: A Scalable Multi-Dimensional Benchmark for Essential Virtual Agent Capabilities [56.646832992178105]
We introduce OmniBench, a cross-platform, graph-based benchmark with an automated pipeline for synthesizing tasks of controllable complexity.<n>We present OmniEval, a multidimensional evaluation framework that includes subtask-level evaluation, graph-based metrics, and comprehensive tests across 10 capabilities.<n>Our dataset contains 36k graph-structured tasks across 20 scenarios, achieving a 91% human acceptance rate.
arXiv Detail & Related papers (2025-06-10T15:59:38Z) - Coding Agents with Multimodal Browsing are Generalist Problem Solvers [48.938445118630284]
OpenHands-Versa is a generalist AI agent built with a modest number of general tools.<n>We show how existing state-of-the-art multi-agent systems fail to generalize beyond their target domains.
arXiv Detail & Related papers (2025-06-03T15:50:55Z) - OSUniverse: Benchmark for Multimodal GUI-navigation AI Agents [0.0]
OSUniverse is a benchmark of complex, multimodal desktop-oriented tasks for advanced GUI-navigation AI agents.<n>We divide the tasks in increasing levels of complexity, from basic precision clicking to multistep, multiapplication tests requiring dexterity, precision, and clear thinking from the agent.<n>The benchmark can be scored manually, but we also introduce an automated validation mechanism that has an average error rate less than 2%.
arXiv Detail & Related papers (2025-05-06T14:29:47Z) - MDocAgent: A Multi-Modal Multi-Agent Framework for Document Understanding [40.52017994491893]
MDocAgent is a novel RAG and multi-agent framework that leverages both text and image.<n>Our system employs five specialized agents: a general agent, a critical agent, a text agent, an image agent and a summarizing agent.<n>Preliminary experiments on five benchmarks demonstrate the effectiveness of our MDocAgent, achieve an average improvement of 12.1%.
arXiv Detail & Related papers (2025-03-18T06:57:21Z) - ComfyBench: Benchmarking LLM-based Agents in ComfyUI for Autonomously Designing Collaborative AI Systems [80.69865295743149]
This work attempts to study using LLM-based agents to design collaborative AI systems autonomously.<n>Based on ComfyBench, we develop ComfyAgent, a framework that empowers agents to autonomously design collaborative AI systems by generating.<n>While ComfyAgent achieves a comparable resolve rate to o1-preview and significantly surpasses other agents on ComfyBench, ComfyAgent has resolved only 15% of creative tasks.
arXiv Detail & Related papers (2024-09-02T17:44:10Z) - VisualAgentBench: Towards Large Multimodal Models as Visual Foundation Agents [50.12414817737912]
Large Multimodal Models (LMMs) have ushered in a new era in artificial intelligence, merging capabilities in both language and vision to form highly capable Visual Foundation Agents.
Existing benchmarks fail to sufficiently challenge or showcase the full potential of LMMs in complex, real-world environments.
VisualAgentBench (VAB) is a pioneering benchmark specifically designed to train and evaluate LMMs as visual foundation agents.
arXiv Detail & Related papers (2024-08-12T17:44:17Z) - CRAB: Cross-environment Agent Benchmark for Multimodal Language Model Agents [49.68117560675367]
Crab is the first benchmark framework designed to support cross-environment tasks.
Our framework supports multiple devices and can be easily extended to any environment with a Python interface.
The experimental results demonstrate that the single agent with GPT-4o achieves the best completion ratio of 38.01%.
arXiv Detail & Related papers (2024-07-01T17:55:04Z) - OSWorld: Benchmarking Multimodal Agents for Open-Ended Tasks in Real Computer Environments [87.41051677852231]
We introduce OSWorld, the first-of-its-kind scalable, real computer environment for multimodal agents.
OSWorld can serve as a unified, integrated computer environment for assessing open-ended computer tasks.
We create a benchmark of 369 computer tasks involving real web and desktop apps in open domains, OS file I/O, and spanning multiple applications.
arXiv Detail & Related papers (2024-04-11T17:56:05Z) - ScreenAgent: A Vision Language Model-driven Computer Control Agent [17.11085071288194]
We build an environment for a Vision Language Model (VLM) agent to interact with a real computer screen.
Within this environment, the agent can observe screenshots and manipulate the Graphics User Interface (GUI) by outputting mouse and keyboard actions.
We construct the ScreenAgent dataset, which collects screenshots and action sequences when completing a variety of daily computer tasks.
arXiv Detail & Related papers (2024-02-09T02:33:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.