論文の概要: On the Security Risks of ML-based Malware Detection Systems: A Survey
- arxiv url: http://arxiv.org/abs/2505.10903v1
- Date: Fri, 16 May 2025 06:15:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-19 14:36:14.190724
- Title: On the Security Risks of ML-based Malware Detection Systems: A Survey
- Title(参考訳): 機械学習によるマルウェア検出システムのセキュリティリスクに関する調査
- Authors: Ping He, Yuhao Mao, Changjiang Li, Lorenzo Cavallaro, Ting Wang, Shouling Ji,
- Abstract要約: マルウェアはユーザーのプライバシーとデータの完全性に永続的な脅威をもたらす。
これに対抗するために、機械学習(MLベース)マルウェア検出(MD)システムを開発した。
これらのシステムは近年ますます攻撃を受けており、実際の有効性を損なうものとなっている。
- 参考スコア(独自算出の注目度): 40.831924021306506
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Malware presents a persistent threat to user privacy and data integrity. To combat this, machine learning-based (ML-based) malware detection (MD) systems have been developed. However, these systems have increasingly been attacked in recent years, undermining their effectiveness in practice. While the security risks associated with ML-based MD systems have garnered considerable attention, the majority of prior works is limited to adversarial malware examples, lacking a comprehensive analysis of practical security risks. This paper addresses this gap by utilizing the CIA principles to define the scope of security risks. We then deconstruct ML-based MD systems into distinct operational stages, thus developing a stage-based taxonomy. Utilizing this taxonomy, we summarize the technical progress and discuss the gaps in the attack and defense proposals related to the ML-based MD systems within each stage. Subsequently, we conduct two case studies, using both inter-stage and intra-stage analyses according to the stage-based taxonomy to provide new empirical insights. Based on these analyses and insights, we suggest potential future directions from both inter-stage and intra-stage perspectives.
- Abstract(参考訳): マルウェアはユーザーのプライバシーとデータの完全性に永続的な脅威をもたらす。
これに対抗するために、機械学習(MLベース)マルウェア検出(MD)システムを開発した。
しかし、これらのシステムは近年ますます攻撃を受けており、実際の有効性を損なうものとなっている。
MLベースのMDシステムに関連するセキュリティリスクはかなり注目されているが、以前の研究の大部分は敵のマルウェアの例に限られており、実用的なセキュリティリスクの包括的な分析が欠如している。
本稿では、CIAの原則を利用してセキュリティリスクの範囲を定義することにより、このギャップに対処する。
そこで我々は,MLに基づくMDシステムを異なる運用段階に分解し,ステージベースの分類法を開発した。
この分類を利用して、技術的進歩を要約し、各段階におけるMLベースのMDシステムに関連する攻撃・防衛提案のギャップについて論じる。
その後、段階分類に基づく段階間分析と段階内分析の両方を用いて、新たな経験的洞察を提供する2つの事例研究を行った。
これらの分析と洞察に基づいて、ステージ間とステージ内の両方の観点から将来的な方向性を提案する。
関連論文リスト
- Survey on AI-Generated Media Detection: From Non-MLLM to MLLM [51.91311158085973]
AI生成メディアを検出する方法は急速に進化してきた。
MLLMに基づく汎用検出器は、信頼性検証、説明可能性、ローカライゼーション機能を統合する。
倫理的・セキュリティ的な配慮が、重要な世界的な懸念として浮上している。
論文 参考訳(メタデータ) (2025-02-07T12:18:20Z) - Navigating the Risks: A Survey of Security, Privacy, and Ethics Threats in LLM-Based Agents [67.07177243654485]
この調査は、大規模言語モデルに基づくエージェントが直面するさまざまな脅威を収集、分析する。
LLMをベースとしたエージェントの6つの重要な特徴を概説する。
4つの代表エージェントをケーススタディとして選択し,実践的に直面する可能性のあるリスクを分析した。
論文 参考訳(メタデータ) (2024-11-14T15:40:04Z) - Explainable Artificial Intelligence (XAI) for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges [0.0]
説明可能なAI(XAI)は、強力な検出能力を保ちながら、モデルの解釈可能性を向上させることで、このギャップに対処する。
我々は,既存のXAIフレームワーク,マルウェア分類・検出への応用,およびマルウェア検出モデルをより解釈可能なものにする上での課題について検討する。
この調査は、サイバーセキュリティにおけるMLのパフォーマンスと説明可能性のギャップを埋めようとしている研究者や実践者にとって、貴重なリソースとなる。
論文 参考訳(メタデータ) (2024-09-09T08:19:33Z) - Vulnerability of Machine Learning Approaches Applied in IoT-based Smart Grid: A Review [51.31851488650698]
機械学習(ML)は、IoT(Internet-of-Things)ベースのスマートグリッドでの使用頻度が高まっている。
電力信号に注入された逆方向の歪みは システムの正常な制御と操作に大きな影響を及ぼす
安全クリティカルパワーシステムに適用されたMLsgAPPの脆弱性評価を行うことが不可欠である。
論文 参考訳(メタデータ) (2023-08-30T03:29:26Z) - Towards Developing Safety Assurance Cases for Learning-Enabled Medical
Cyber-Physical Systems [3.098385261166847]
我々は、学習可能なMCPSにおける機械学習コントローラの安全性保証ケースを開発する。
我々は,人工膵システムにおける予測のためのディープニューラルネットワークを実装することで,詳細な解析を行う。
本稿では,MLデータの妥当性を確認し,形式的検証を用いてMLに基づく予測の正しさを解析する。
論文 参考訳(メタデータ) (2022-11-23T22:43:48Z) - System Safety Engineering for Social and Ethical ML Risks: A Case Study [0.5249805590164902]
政府、産業、アカデミックはML駆動システムにおける害を特定し緩和する努力をしてきた。
既存のアプローチは概ね不整合であり、アドホックであり、有効性は不明である。
特に、この分析が社会的および倫理的リスクを識別し、それらを緩和するための具体的な設計レベルの制御を開発するためにどのように拡張できるかに焦点を当てる。
論文 参考訳(メタデータ) (2022-11-08T22:58:58Z) - A Framework for Evaluating the Cybersecurity Risk of Real World, Machine
Learning Production Systems [41.470634460215564]
我々はML生産システムにサイバー攻撃を組み込むMulVAL攻撃グラフ生成および分析フレームワークの拡張を開発する。
提案された拡張を使用することで、セキュリティ実践者はMLコンポーネントを含む環境にアタックグラフ分析手法を適用することができる。
論文 参考訳(メタデータ) (2021-07-05T05:58:11Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
安全クリティカルなアプリケーションにディープニューラルネットワーク(DNN)を使用することは、多数のモデル固有の欠点のために困難です。
近年,これらの安全対策を目的とした最先端技術動物園が出現している。
本稿は、機械学習の専門家と安全エンジニアの両方に対処する。
論文 参考訳(メタデータ) (2021-04-29T09:54:54Z) - Towards a Robust and Trustworthy Machine Learning System Development [0.09236074230806578]
最新のML信頼性と技術に関する最近の調査をセキュリティエンジニアリングの視点から紹介します。
次に、ML実践者のための標準的かつ視覚化された方法で知識の体を表すメタモデルを記述することによって、調査の前後に研究を進めます。
本稿では,堅牢で信頼性の高いMLシステムの開発を進めるための今後の研究方向性を提案する。
論文 参考訳(メタデータ) (2021-01-08T14:43:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。