Who You Are Matters: Bridging Topics and Social Roles via LLM-Enhanced Logical Recommendation
- URL: http://arxiv.org/abs/2505.10940v2
- Date: Tue, 20 May 2025 06:58:19 GMT
- Title: Who You Are Matters: Bridging Topics and Social Roles via LLM-Enhanced Logical Recommendation
- Authors: Qing Yu, Xiaobei Wang, Shuchang Liu, Yandong Bai, Xiaoyu Yang, Xueliang Wang, Chang Meng, Shanshan Wu, Hailan Yang, Huihui Xiao, Xiang Li, Fan Yang, Xiaoqiang Feng, Lantao Hu, Han Li, Kun Gai, Lixin Zou,
- Abstract summary: We introduce the user role identification task and the behavioral logic modeling task that aim to explicitly model user roles.<n>We show that it is possible to explicitly solve these tasks through an efficient integration framework of Large Language Model and recommendation systems.<n>We propose TagCF, which exploits the (Multi-modal) LLM's world knowledge and logic inference ability to extract realistic tag-based virtual logic graphs.
- Score: 26.412542838206942
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recommender systems filter contents/items valuable to users by inferring preferences from user features and historical behaviors. Mainstream approaches follow the learning-to-rank paradigm, which focus on discovering and modeling item topics (e.g., categories), and capturing user preferences on these topics based on historical interactions. However, this paradigm often neglects the modeling of user characteristics and their social roles, which are logical confounders influencing the correlated interest and user preference transition. To bridge this gap, we introduce the user role identification task and the behavioral logic modeling task that aim to explicitly model user roles and learn the logical relations between item topics and user social roles. We show that it is possible to explicitly solve these tasks through an efficient integration framework of Large Language Model (LLM) and recommendation systems, for which we propose TagCF. On the one hand, TagCF exploits the (Multi-modal) LLM's world knowledge and logic inference ability to extract realistic tag-based virtual logic graphs that reveal dynamic and expressive knowledge of users, refining our understanding of user behaviors. On the other hand, TagCF presents empirically effective integration modules that take advantage of the extracted tag-logic information, augmenting the recommendation performance. We conduct both online experiments and offline experiments with industrial and public datasets as verification of TagCF's effectiveness, and we empirically show that the user role modeling strategy is potentially a better choice than the modeling of item topics. Additionally, we provide evidence that the extracted logic graphs are empirically a general and transferable knowledge that can benefit a wide range of recommendation tasks.
Related papers
- LLM-Driven Dual-Level Multi-Interest Modeling for Recommendation [12.89199121698673]
Large language models (LLMs) show significant potential for multi-interest analysis due to their extensive knowledge and powerful reasoning capabilities.<n>We propose an LLM-driven dual-level multi-interest modeling framework for more effective recommendation.<n> Experiments on real-world datasets show the superiority of our approach against state-of-the-art methods.
arXiv Detail & Related papers (2025-07-15T02:13:54Z) - Multi-agents based User Values Mining for Recommendation [52.26100802380767]
We propose a zero-shot multi-LLM collaborative framework for effective and accurate user value extraction.<n>We apply text summarization techniques to condense item content while preserving essential meaning.<n>To mitigate hallucinations, we introduce two specialized agent roles: evaluators and supervisors.
arXiv Detail & Related papers (2025-05-02T04:01:31Z) - LLM-based Bi-level Multi-interest Learning Framework for Sequential Recommendation [54.396000434574454]
We propose a novel multi-interest SR framework combining implicit behavioral and explicit semantic perspectives.<n>It includes two modules: the Implicit Behavioral Interest Module and the Explicit Semantic Interest Module.<n>Experiments on four real-world datasets validate the framework's effectiveness and practicality.
arXiv Detail & Related papers (2024-11-14T13:00:23Z) - Towards Boosting LLMs-driven Relevance Modeling with Progressive Retrieved Behavior-augmented Prompting [23.61061000692023]
This study proposes leveraging user interactions recorded in search logs to yield insights into users' implicit search intentions.<n>We propose ProRBP, a novel Progressive Retrieved Behavior-augmented Prompting framework for integrating search scenario-oriented knowledge with Large Language Models.
arXiv Detail & Related papers (2024-08-18T11:07:38Z) - Causal Structure Representation Learning of Confounders in Latent Space for Recommendation [29.116042992171987]
Inferring user preferences from the historical feedback of users is a valuable problem in recommender systems.<n>We consider the influence of confounders, disentangle them from user preferences in the latent space, and employ causal graphs to model their interdependencies.
arXiv Detail & Related papers (2023-11-02T08:46:07Z) - Explainable Active Learning for Preference Elicitation [0.0]
We employ Active Learning (AL) to solve the addressed problem with the objective of maximizing information acquisition with minimal user effort.
AL operates for selecting informative data from a large unlabeled set to inquire an oracle to label them.
It harvests user feedback (given for the system's explanations on the presented items) over informative samples to update an underlying machine learning (ML) model.
arXiv Detail & Related papers (2023-09-01T09:22:33Z) - COLA: Improving Conversational Recommender Systems by Collaborative
Augmentation [9.99763097964222]
We propose a collaborative augmentation (COLA) method to improve both item representation learning and user preference modeling.
We construct an interactive user-item graph from all conversations, which augments item representations with user-aware information.
To improve user preference modeling, we retrieve similar conversations from the training corpus, where the involved items and attributes that reflect the user's potential interests are used to augment the user representation.
arXiv Detail & Related papers (2022-12-15T12:37:28Z) - Latent User Intent Modeling for Sequential Recommenders [92.66888409973495]
Sequential recommender models learn to predict the next items a user is likely to interact with based on his/her interaction history on the platform.
Most sequential recommenders however lack a higher-level understanding of user intents, which often drive user behaviors online.
Intent modeling is thus critical for understanding users and optimizing long-term user experience.
arXiv Detail & Related papers (2022-11-17T19:00:24Z) - Coarse-to-Fine Knowledge-Enhanced Multi-Interest Learning Framework for
Multi-Behavior Recommendation [52.89816309759537]
Multi-types of behaviors (e.g., clicking, adding to cart, purchasing, etc.) widely exist in most real-world recommendation scenarios.
The state-of-the-art multi-behavior models learn behavior dependencies indistinguishably with all historical interactions as input.
We propose a novel Coarse-to-fine Knowledge-enhanced Multi-interest Learning framework to learn shared and behavior-specific interests for different behaviors.
arXiv Detail & Related papers (2022-08-03T05:28:14Z) - Knowledge-Enhanced Hierarchical Graph Transformer Network for
Multi-Behavior Recommendation [56.12499090935242]
This work proposes a Knowledge-Enhanced Hierarchical Graph Transformer Network (KHGT) to investigate multi-typed interactive patterns between users and items in recommender systems.
KHGT is built upon a graph-structured neural architecture to capture type-specific behavior characteristics.
We show that KHGT consistently outperforms many state-of-the-art recommendation methods across various evaluation settings.
arXiv Detail & Related papers (2021-10-08T09:44:00Z) - Mixture of Virtual-Kernel Experts for Multi-Objective User Profile
Modeling [9.639497198579257]
deep learning is widely used to mine expressive tags to describe users' preferences from their historical actions.
Traditional solutions usually introduce multiple independent Two-Tower models to mine tags from different actions.
This paper introduces a novel multi-task model called Mixture of Virtual- Kernel Experts (MVKE) to learn multiple topic-related user preferences.
arXiv Detail & Related papers (2021-06-04T07:52:52Z) - Explainable Recommender Systems via Resolving Learning Representations [57.24565012731325]
Explanations could help improve user experience and discover system defects.
We propose a novel explainable recommendation model through improving the transparency of the representation learning process.
arXiv Detail & Related papers (2020-08-21T05:30:48Z) - Disentangled Graph Collaborative Filtering [100.26835145396782]
Disentangled Graph Collaborative Filtering (DGCF) is a new model for learning informative representations of users and items from interaction data.
By modeling a distribution over intents for each user-item interaction, we iteratively refine the intent-aware interaction graphs and representations.
DGCF achieves significant improvements over several state-of-the-art models like NGCF, DisenGCN, and MacridVAE.
arXiv Detail & Related papers (2020-07-03T15:37:25Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
We propose a novel adversarial learning approach by leveraging user interaction data for the Knowledge Graph Completion task.
Our generator is isolated from user interaction data, and serves to improve the performance of the discriminator.
To discover implicit entity preference of users, we design an elaborate collaborative learning algorithms based on graph neural networks.
arXiv Detail & Related papers (2020-03-28T05:47:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.