Privacy-Aware Lifelong Learning
- URL: http://arxiv.org/abs/2505.10941v1
- Date: Fri, 16 May 2025 07:27:00 GMT
- Title: Privacy-Aware Lifelong Learning
- Authors: Ozan Ă–zdenizci, Elmar Rueckert, Robert Legenstein,
- Abstract summary: The field of machine unlearning focuses on explicitly forgetting certain previous knowledge from pretrained models when requested.<n>We propose a solution, privacy-aware lifelong learning (PALL), involving optimization of task-specific sparseworks with parameter sharing within a single architecture.<n>We empirically demonstrate the scalability of PALL across various architectures in image classification, and provide a state-of-the-art solution.
- Score: 14.83033354320841
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lifelong learning algorithms enable models to incrementally acquire new knowledge without forgetting previously learned information. Contrarily, the field of machine unlearning focuses on explicitly forgetting certain previous knowledge from pretrained models when requested, in order to comply with data privacy regulations on the right-to-be-forgotten. Enabling efficient lifelong learning with the capability to selectively unlearn sensitive information from models presents a critical and largely unaddressed challenge with contradicting objectives. We address this problem from the perspective of simultaneously preventing catastrophic forgetting and allowing forward knowledge transfer during task-incremental learning, while ensuring exact task unlearning and minimizing memory requirements, based on a single neural network model to be adapted. Our proposed solution, privacy-aware lifelong learning (PALL), involves optimization of task-specific sparse subnetworks with parameter sharing within a single architecture. We additionally utilize an episodic memory rehearsal mechanism to facilitate exact unlearning without performance degradations. We empirically demonstrate the scalability of PALL across various architectures in image classification, and provide a state-of-the-art solution that uniquely integrates lifelong learning and privacy-aware unlearning mechanisms for responsible AI applications.
Related papers
- Efficient Machine Unlearning via Influence Approximation [75.31015485113993]
Influence-based unlearning has emerged as a prominent approach to estimate the impact of individual training samples on model parameters without retraining.<n>This paper establishes a theoretical link between memorizing (incremental learning) and forgetting (unlearning)<n>We introduce the Influence Approximation Unlearning algorithm for efficient machine unlearning from the incremental perspective.
arXiv Detail & Related papers (2025-07-31T05:34:27Z) - Machine Unlearning via Information Theoretic Regularization [3.05179671246628]
We introduce a mathematical framework based on information-theoretic regularization to address both feature and data point unlearning.<n>By combining flexibility in learning objectives with simplicity in regularization design, our approach is highly adaptable and practical for a wide range of machine learning and AI applications.
arXiv Detail & Related papers (2025-02-08T20:33:06Z) - CSTA: Spatial-Temporal Causal Adaptive Learning for Exemplar-Free Video Class-Incremental Learning [62.69917996026769]
A class-incremental learning task requires learning and preserving both spatial appearance and temporal action involvement.<n>We propose a framework that equips separate adapters to learn new class patterns, accommodating the incremental information requirements unique to each class.<n>A causal compensation mechanism is proposed to reduce the conflicts during increment and memorization for between different types of information.
arXiv Detail & Related papers (2025-01-13T11:34:55Z) - Zero-shot Class Unlearning via Layer-wise Relevance Analysis and Neuronal Path Perturbation [11.174705227990241]
Machine unlearning is a technique that removes specific data influences from trained models without the need for extensive retraining.
This paper presents a novel approach to machine unlearning by employing Layer-wise Relevance Analysis and Neuronal Path Perturbation.
Our method balances machine unlearning performance and model utility by identifying and perturbing highly relevant neurons, thereby achieving effective unlearning.
arXiv Detail & Related papers (2024-10-31T07:37:04Z) - Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [52.03511469562013]
We introduce the Iterative Contrastive Unlearning (ICU) framework, which consists of three core components.<n>A Knowledge Unlearning Induction module targets specific knowledge for removal using an unlearning loss.<n>A Contrastive Learning Enhancement module preserves the model's expressive capabilities against the pure unlearning goal.<n>An Iterative Unlearning Refinement module dynamically adjusts the unlearning process through ongoing evaluation and updates.
arXiv Detail & Related papers (2024-07-25T07:09:35Z) - Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models [79.28821338925947]
Domain-Class Incremental Learning is a realistic but challenging continual learning scenario.
To handle these diverse tasks, pre-trained Vision-Language Models (VLMs) are introduced for their strong generalizability.
This incurs a new problem: the knowledge encoded in the pre-trained VLMs may be disturbed when adapting to new tasks, compromising their inherent zero-shot ability.
Existing methods tackle it by tuning VLMs with knowledge distillation on extra datasets, which demands heavy overhead.
We propose the Distribution-aware Interference-free Knowledge Integration (DIKI) framework, retaining pre-trained knowledge of
arXiv Detail & Related papers (2024-07-07T12:19:37Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Class-wise Federated Unlearning: Harnessing Active Forgetting with Teacher-Student Memory Generation [11.638683787598817]
We propose a neuro-inspired federated unlearning framework based on active forgetting.<n>Our framework distinguishes itself from existing methods by utilizing new memories to overwrite old ones.<n>Our method achieves satisfactory unlearning completeness against backdoor attacks.
arXiv Detail & Related papers (2023-07-07T03:07:26Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
We propose a rehearsal-free CIL approach that learns continually via the synergy between two Complementary Learning Subnetworks.
Our method achieves competitive results against state-of-the-art methods, especially in accuracy gain, memory cost, training efficiency, and task-order.
arXiv Detail & Related papers (2023-06-21T01:43:25Z) - Anti-Retroactive Interference for Lifelong Learning [65.50683752919089]
We design a paradigm for lifelong learning based on meta-learning and associative mechanism of the brain.
It tackles the problem from two aspects: extracting knowledge and memorizing knowledge.
It is theoretically analyzed that the proposed learning paradigm can make the models of different tasks converge to the same optimum.
arXiv Detail & Related papers (2022-08-27T09:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.