Zero-shot Class Unlearning via Layer-wise Relevance Analysis and Neuronal Path Perturbation
- URL: http://arxiv.org/abs/2410.23693v1
- Date: Thu, 31 Oct 2024 07:37:04 GMT
- Title: Zero-shot Class Unlearning via Layer-wise Relevance Analysis and Neuronal Path Perturbation
- Authors: Wenhan Chang, Tianqing Zhu, Yufeng Wu, Wanlei Zhou,
- Abstract summary: Machine unlearning is a technique that removes specific data influences from trained models without the need for extensive retraining.
This paper presents a novel approach to machine unlearning by employing Layer-wise Relevance Analysis and Neuronal Path Perturbation.
Our method balances machine unlearning performance and model utility by identifying and perturbing highly relevant neurons, thereby achieving effective unlearning.
- Score: 11.174705227990241
- License:
- Abstract: In the rapid advancement of artificial intelligence, privacy protection has become crucial, giving rise to machine unlearning. Machine unlearning is a technique that removes specific data influences from trained models without the need for extensive retraining. However, it faces several key challenges, including accurately implementing unlearning, ensuring privacy protection during the unlearning process, and achieving effective unlearning without significantly compromising model performance. This paper presents a novel approach to machine unlearning by employing Layer-wise Relevance Analysis and Neuronal Path Perturbation. We address three primary challenges: the lack of detailed unlearning principles, privacy guarantees in zero-shot unlearning scenario, and the balance between unlearning effectiveness and model utility. Our method balances machine unlearning performance and model utility by identifying and perturbing highly relevant neurons, thereby achieving effective unlearning. By using data not present in the original training set during the unlearning process, we satisfy the zero-shot unlearning scenario and ensure robust privacy protection. Experimental results demonstrate that our approach effectively removes targeted data from the target unlearning model while maintaining the model's utility, offering a practical solution for privacy-preserving machine learning.
Related papers
- Benchmarking Vision Language Model Unlearning via Fictitious Facial Identity Dataset [94.13848736705575]
We introduce Facial Identity Unlearning Benchmark (FIUBench), a novel VLM unlearning benchmark designed to robustly evaluate the effectiveness of unlearning algorithms.
We apply a two-stage evaluation pipeline that is designed to precisely control the sources of information and their exposure levels.
Through the evaluation of four baseline VLM unlearning algorithms within FIUBench, we find that all methods remain limited in their unlearning performance.
arXiv Detail & Related papers (2024-11-05T23:26:10Z) - Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [49.043599241803825]
Iterative Contrastive Unlearning (ICU) framework consists of three core components.
A Knowledge Unlearning Induction module removes specific knowledge through an unlearning loss.
A Contrastive Learning Enhancement module to preserve the model's expressive capabilities against the pure unlearning goal.
And an Iterative Unlearning Refinement module that dynamically assess the unlearning extent on specific data pieces and make iterative update.
arXiv Detail & Related papers (2024-07-25T07:09:35Z) - Silver Linings in the Shadows: Harnessing Membership Inference for Machine Unlearning [7.557226714828334]
We present a novel unlearning mechanism designed to remove the impact of specific data samples from a neural network.
In achieving this goal, we crafted a novel loss function tailored to eliminate privacy-sensitive information from weights and activation values of the target model.
Our results showcase the superior performance of our approach in terms of unlearning efficacy and latency as well as the fidelity of the primary task.
arXiv Detail & Related papers (2024-07-01T00:20:26Z) - Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
Recent research has begun to approach large language models (LLMs) unlearning via gradient ascent (GA)
Despite their simplicity and efficiency, we suggest that GA-based methods face the propensity towards excessive unlearning.
We propose several controlling methods that can regulate the extent of excessive unlearning.
arXiv Detail & Related papers (2024-06-13T14:41:00Z) - Learn What You Want to Unlearn: Unlearning Inversion Attacks against Machine Unlearning [16.809644622465086]
We conduct the first investigation to understand the extent to which machine unlearning can leak the confidential content of unlearned data.
Under the Machine Learning as a Service setting, we propose unlearning inversion attacks that can reveal the feature and label information of an unlearned sample.
The experimental results indicate that the proposed attack can reveal the sensitive information of the unlearned data.
arXiv Detail & Related papers (2024-04-04T06:37:46Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - Towards Independence Criterion in Machine Unlearning of Features and
Labels [9.790684060172662]
This work delves into the complexities of machine unlearning in the face of distributional shifts.
Our research introduces a novel approach that leverages influence functions and principles of distributional independence to address these challenges.
Our method not only facilitates efficient data removal but also dynamically adjusts the model to preserve its generalization capabilities.
arXiv Detail & Related papers (2024-03-12T23:21:09Z) - Machine unlearning through fine-grained model parameters perturbation [26.653596302257057]
We propose fine-grained Top-K and Random-k parameters perturbed inexact machine unlearning strategies.
We also tackle the challenge of evaluating the effectiveness of machine unlearning.
arXiv Detail & Related papers (2024-01-09T07:14:45Z) - A Duty to Forget, a Right to be Assured? Exposing Vulnerabilities in Machine Unlearning Services [31.347825826778276]
We try to explore the potential threats posed by unlearning services in Machine Learning (ML)
We propose two strategies that leverage over-unlearning to measure the impact on the trade-off balancing.
Results indicate significant potential for both strategies to undermine model efficacy in unlearning scenarios.
arXiv Detail & Related papers (2023-09-15T08:00:45Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
Learning Active Learning (LAL) suggests to learn the active learning strategy itself, allowing it to adapt to the given setting.
We propose a novel LAL method for classification that exploits symmetry and independence properties of the active learning problem.
Our approach is based on learning from a myopic oracle, which gives our model the ability to adapt to non-standard objectives.
arXiv Detail & Related papers (2023-09-11T14:16:37Z) - Machine Unlearning of Features and Labels [72.81914952849334]
We propose first scenarios for unlearning and labels in machine learning models.
Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters.
arXiv Detail & Related papers (2021-08-26T04:42:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.