GRoQ-LoCO: Generalist and Robot-agnostic Quadruped Locomotion Control using Offline Datasets
- URL: http://arxiv.org/abs/2505.10973v3
- Date: Sat, 24 May 2025 18:28:59 GMT
- Title: GRoQ-LoCO: Generalist and Robot-agnostic Quadruped Locomotion Control using Offline Datasets
- Authors: Narayanan PP, Sarvesh Prasanth Venkatesan, Srinivas Kantha Reddy, Shishir Kolathaya,
- Abstract summary: GRoQ-LoCO is a scalable, attention-based framework that learns a single generalist locomotion policy across multiple quadruped robots and terrains.<n>Our framework operates solely on proprioceptive data from all robots without incorporating any robot-specific encodings.<n>Results demonstrate the potential of offline, data-driven learning to generalize locomotion across diverse quadruped morphologies and behaviors.
- Score: 0.8678250057211367
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in large-scale offline training have demonstrated the potential of generalist policy learning for complex robotic tasks. However, applying these principles to legged locomotion remains a challenge due to continuous dynamics and the need for real-time adaptation across diverse terrains and robot morphologies. In this work, we propose GRoQ-LoCO, a scalable, attention-based framework that learns a single generalist locomotion policy across multiple quadruped robots and terrains, relying solely on offline datasets. Our approach leverages expert demonstrations from two distinct locomotion behaviors - stair traversal (non-periodic gaits) and flat terrain traversal (periodic gaits) - collected across multiple quadruped robots, to train a generalist model that enables behavior fusion. Crucially, our framework operates solely on proprioceptive data from all robots without incorporating any robot-specific encodings. The policy is directly deployable on an Intel i7 nuc, producing low-latency control outputs without any test-time optimization. Our extensive experiments demonstrate zero-shot transfer across highly diverse quadruped robots and terrains, including hardware deployment on the Unitree Go1, a commercially available 12kg robot. Notably, we evaluate challenging cross-robot training setups where different locomotion skills are unevenly distributed across robots, yet observe successful transfer of both flat walking and stair traversal behaviors to all robots at test time. We also show preliminary walking on Stoch 5, a 70kg quadruped, on flat and outdoor terrains without requiring any fine tuning. These results demonstrate the potential of offline, data-driven learning to generalize locomotion across diverse quadruped morphologies and behaviors.
Related papers
- Training Directional Locomotion for Quadrupedal Low-Cost Robotic Systems via Deep Reinforcement Learning [4.669957449088593]
We present Deep Reinforcement Learning training of directional locomotion for low-cost quadpedalru robots in the real world.<n>We exploit randomization of heading that the robot must follow to foster exploration of action-state transitions.<n>Changing the heading in episode resets to current yaw plus a random value drawn from a normal distribution yields policies able to follow complex trajectories.
arXiv Detail & Related papers (2025-03-14T03:53:01Z) - Gait in Eight: Efficient On-Robot Learning for Omnidirectional Quadruped Locomotion [13.314871831095882]
On-robot Reinforcement Learning is a promising approach to train embodiment-aware policies for legged robots.<n>We present a framework for efficiently learning quadruped locomotion in just 8 minutes of raw real-time training.<n>We demonstrate the robustness of our approach in different indoor and outdoor environments.
arXiv Detail & Related papers (2025-03-11T12:32:06Z) - Scaling Cross-Embodied Learning: One Policy for Manipulation, Navigation, Locomotion and Aviation [49.03165169369552]
By training a single policy across many different kinds of robots, a robot learning method can leverage much broader and more diverse datasets.
We propose CrossFormer, a scalable and flexible transformer-based policy that can consume data from any embodiment.
We demonstrate that the same network weights can control vastly different robots, including single and dual arm manipulation systems, wheeled robots, quadcopters, and quadrupeds.
arXiv Detail & Related papers (2024-08-21T17:57:51Z) - Commonsense Reasoning for Legged Robot Adaptation with Vision-Language Models [81.55156507635286]
Legged robots are physically capable of navigating a diverse variety of environments and overcoming a wide range of obstructions.
Current learning methods often struggle with generalization to the long tail of unexpected situations without heavy human supervision.
We propose a system, VLM-Predictive Control (VLM-PC), combining two key components that we find to be crucial for eliciting on-the-fly, adaptive behavior selection.
arXiv Detail & Related papers (2024-07-02T21:00:30Z) - Learning Visual Quadrupedal Loco-Manipulation from Demonstrations [36.1894630015056]
We aim to empower a quadruped robot to execute real-world manipulation tasks using only its legs.
We decompose the loco-manipulation process into a low-level reinforcement learning (RL)-based controller and a high-level Behavior Cloning (BC)-based planner.
Our approach is validated through simulations and real-world experiments, demonstrating the robot's ability to perform tasks that demand mobility and high precision.
arXiv Detail & Related papers (2024-03-29T17:59:05Z) - Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control [106.32794844077534]
This paper presents a study on using deep reinforcement learning to create dynamic locomotion controllers for bipedal robots.
We develop a general control solution that can be used for a range of dynamic bipedal skills, from periodic walking and running to aperiodic jumping and standing.
This work pushes the limits of agility for bipedal robots through extensive real-world experiments.
arXiv Detail & Related papers (2024-01-30T10:48:43Z) - Barkour: Benchmarking Animal-level Agility with Quadruped Robots [70.97471756305463]
We introduce the Barkour benchmark, an obstacle course to quantify agility for legged robots.
Inspired by dog agility competitions, it consists of diverse obstacles and a time based scoring mechanism.
We present two methods for tackling the benchmark.
arXiv Detail & Related papers (2023-05-24T02:49:43Z) - Learning Bipedal Walking for Humanoids with Current Feedback [5.429166905724048]
We present an approach for overcoming the sim2real gap issue for humanoid robots arising from inaccurate torque-tracking at the actuator level.
Our approach successfully trains a unified, end-to-end policy in simulation that can be deployed on a real HRP-5P humanoid robot to achieve bipedal locomotion.
arXiv Detail & Related papers (2023-03-07T08:16:46Z) - GenLoco: Generalized Locomotion Controllers for Quadrupedal Robots [87.32145104894754]
We introduce a framework for training generalized locomotion (GenLoco) controllers for quadrupedal robots.
Our framework synthesizes general-purpose locomotion controllers that can be deployed on a large variety of quadrupedal robots.
We show that our models acquire more general control strategies that can be directly transferred to novel simulated and real-world robots.
arXiv Detail & Related papers (2022-09-12T15:14:32Z) - Learning Free Gait Transition for Quadruped Robots via Phase-Guided
Controller [4.110347671351065]
We present a novel framework for training a simple control policy for a quadruped robot to locomote in various gaits.
The Black Panther robot, a medium-dog-sized quadruped robot, can perform all learned motor skills while following the velocity commands smoothly and robustly in natural environment.
arXiv Detail & Related papers (2022-01-01T15:15:42Z) - Learning Quadrupedal Locomotion over Challenging Terrain [68.51539602703662]
Legged locomotion can dramatically expand the operational domains of robotics.
Conventional controllers for legged locomotion are based on elaborate state machines that explicitly trigger the execution of motion primitives and reflexes.
Here we present a radically robust controller for legged locomotion in challenging natural environments.
arXiv Detail & Related papers (2020-10-21T19:11:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.