論文の概要: Is Supervised Learning Really That Different from Unsupervised?
- arxiv url: http://arxiv.org/abs/2505.11006v4
- Date: Thu, 09 Oct 2025 03:52:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-10 12:56:53.493796
- Title: Is Supervised Learning Really That Different from Unsupervised?
- Title(参考訳): 教師なし学習とは本当に違うのか?
- Authors: Oskar Allerbo, Thomas B. Schön,
- Abstract要約: 教師あり学習を2段階の手順に分解する方法を実証する。
線形およびカーネルリッジの回帰、スムーズなスプライン、ニューラルネットワークは、yにアクセスせずにトレーニングされ、標準のyベースと同等に動作することを示す。
- 参考スコア(独自算出の注目度): 12.424687747519037
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We demonstrate how supervised learning can be decomposed into a two-stage procedure, where (1) all model parameters are selected in an unsupervised manner, and (2) the outputs y are added to the model, without changing the parameter values. This is achieved by a new model selection criterion that, in contrast to cross-validation, can be used also without access to y. For linear ridge regression, we bound the asymptotic out-of-sample risk of our method in terms of the optimal asymptotic risk. We also demonstrate on real and synthetic data that versions of linear and kernel ridge regression, smoothing splines, and neural networks, which are trained without access to y, perform similarly to their standard y-based counterparts. Hence, our results suggest that the difference between supervised and unsupervised learning is less fundamental than it may appear.
- Abstract(参考訳): 本研究では,(1) モデルパラメータを非教師付きで選択し,(2) パラメータ値を変更することなくモデルにy を付加する2段階の手順で教師付き学習を分解する方法を実証する。
これは、クロスバリデーションとは対照的に、yにアクセスすることなく使用できる新しいモデル選択基準によって達成される。
線形隆起レグレッションでは, 最適漸近リスクの観点から, 本手法の漸近的アウト・オブ・サンプルリスクを定めている。
また、線形およびカーネルリッジの回帰、スムーズなスプライン、ニューラルネットワークなど、yにアクセスせずにトレーニングされた実データや合成データを、標準のyベースと同じようなパフォーマンスで示す。
したがって, 教師なし学習と教師なし学習の差は, 見た目よりも基礎的でないことが示唆された。
関連論文リスト
- Aligning Model Properties via Conformal Risk Control [4.710921988115686]
トレーニング後のアライメントは、人間のフィードバックによって約束されるが、しばしば生成AI設定に限定される。
数値的あるいは分類的な出力を持つ従来の非生成的設定では、単一サンプル出力による誤調整を検出することは依然として困難である。
プロパティテストを通じてモデルアライメントを解釈し、アライメントモデル $f$ を関数のサブセット $mathcalP$ に属するものとして定義する。
論文 参考訳(メタデータ) (2024-06-26T22:24:46Z) - Towards a statistical theory of data selection under weak supervision [7.540077751816086]
サイズが$N$のサンプルが与えられた場合、統計的な推定や学習に使用される小さなサイズの$nN$のサブサンプルを選択するのが有用である。
我々は、ラベルのないサンプル$N$$bold x_i_ile N$を与えられると仮定し、ランダムな推測よりも$y_i$のラベルを予測できる代理モデルにアクセスできると仮定する。
論文 参考訳(メタデータ) (2023-09-25T22:23:27Z) - Label-Retrieval-Augmented Diffusion Models for Learning from Noisy
Labels [61.97359362447732]
ノイズの多いラベルからの学習は、実際のアプリケーションのための機械学習において、重要かつ長年にわたる問題である。
本稿では,生成モデルの観点からラベルノイズ問題を再構成する。
我々のモデルは、標準的な実世界のベンチマークデータセットで新しいSOTA(State-of-the-art)結果を達成する。
論文 参考訳(メタデータ) (2023-05-31T03:01:36Z) - CARD: Classification and Regression Diffusion Models [51.0421331214229]
本稿では,条件生成モデルと事前学習条件平均推定器を組み合わせた分類と回帰拡散(CARD)モデルを提案する。
おもちゃの例と実世界のデータセットを用いて条件分布予測におけるCARDの卓越した能力を示す。
論文 参考訳(メタデータ) (2022-06-15T03:30:38Z) - What Makes A Good Fisherman? Linear Regression under Self-Selection Bias [32.6588421908864]
古典的な自己選択の設定では、ゴールは、観測値$(x(i), y(i))$から同時に$k$モデルを学ぶことである。
本研究では,モデルが線形であるこの問題の最も標準的な設定に対して,計算的かつ統計的に効率的な推定アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T14:03:05Z) - $p$-Generalized Probit Regression and Scalable Maximum Likelihood
Estimation via Sketching and Coresets [74.37849422071206]
本稿では, 2次応答に対する一般化線形モデルである,$p$一般化プロビット回帰モデルについて検討する。
p$の一般化されたプロビット回帰に対する最大可能性推定器は、大容量データ上で$(1+varepsilon)$の係数まで効率的に近似できることを示す。
論文 参考訳(メタデータ) (2022-03-25T10:54:41Z) - Datamodels: Predicting Predictions from Training Data [86.66720175866415]
本稿では,モデルクラスの振る舞いを学習データの観点から分析するための概念的枠組みであるデータモデリングについて述べる。
単純な線形データモデルであっても、モデル出力をうまく予測できることが示される。
論文 参考訳(メタデータ) (2022-02-01T18:15:24Z) - Cross-Model Pseudo-Labeling for Semi-Supervised Action Recognition [98.25592165484737]
CMPL(Cross-Model Pseudo-Labeling)と呼ばれる,より効果的な擬似ラベル方式を提案する。
CMPLは、それぞれRGBモダリティとラベル付きデータのみを使用して、Kinetics-400とUCF-101のTop-1の精度を17.6%と25.1%で達成している。
論文 参考訳(メタデータ) (2021-12-17T18:59:41Z) - Analysis of One-Hidden-Layer Neural Networks via the Resolvent Method [0.0]
ランダムニューラルネットワークによって動機づけられた確率行列 $M = Y Yast$ と $Y = f(WX)$ を考える。
制限スペクトル分布のStieltjes変換は、いくつかの誤差項まで準自己整合方程式を満たすことを証明している。
さらに、前回の結果を加法バイアス $Y=f(WX+B)$ の場合に拡張し、$B$ は独立なランク1のガウス確率行列である。
論文 参考訳(メタデータ) (2021-05-11T15:17:39Z) - Improving Robustness and Generality of NLP Models Using Disentangled
Representations [62.08794500431367]
スーパービジョンニューラルネットワークはまず入力$x$を単一の表現$z$にマップし、次に出力ラベル$y$にマッピングする。
本研究では,非交叉表現学習の観点から,NLPモデルの堅牢性と汎用性を改善する手法を提案する。
提案した基準でトレーニングしたモデルは、広範囲の教師付き学習タスクにおいて、より堅牢性とドメイン適応性を向上することを示す。
論文 参考訳(メタデータ) (2020-09-21T02:48:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。